
www.manaraa.com

 131

Exploring the Role of Visualization and Engagement in
Computer Science Education

Report of the Working Group on "Improving the Educational Impact of Algorithm Visualization"

Thomas L. Naps (co-chair) Rudolf Fleischer Myles McNally
U Wisconsin Oshkosh, USA Hong Kong U Sc. & Techn. Alma College, USA
naps@uwosh.edu rudolf@cs.ust.hk mcnally@alma.edu

Guido Rößling (co-chair) Chris Hundhausen Susan Rodger
Darmstadt U Techn., Germany U of Hawaii, USA Duke University, USA
roessling@acm.org hundhaus@hawaii.edu rodger@cs.duke.edu

Vicki Almstrum Ari Korhonen J. Ángel Velázquez-Iturbide
U Texas Austin, USA Helsinki U Techn., Finland U Rey Juan Carlos, Spain
almstrum@acm.org archie@cs.hut.fi a.velazquez@escet.urjc.es

Wanda Dann Lauri Malmi
Ithaca College, USA Helsinki U Techn., Finland
wpdann@ithaca.edu lma@cs.hut.fi

Abstract

Visualization technology can be used to graphically
illustrate various concepts in computer science. We argue
that such technology, no matter how well it is designed, is
of little educational value unless it engages learners in an
active learning activity. Drawing on a review of
experimental studies of visualization effectiveness, we
motivate this position against the backdrop of current
attitudes and best practices with respect to visualization
use. We suggest a new taxonomy of learner engagement
with visualization technology. Grounded in Bloom’s well-
recognized taxonomy of understanding, we suggest metrics
for assessing the learning outcomes to which such
engagement may lead. Based on these taxonomies of
engagement and effectiveness metrics, we present a
framework for experimental studies of visualization
effectiveness. Interested computer science educators are
invited to collaborate with us by carrying out studies within
this framework.

1. Introduction

This report is the culmination of efforts by the Working
Group on Improving the Educational Impact of Algorithm
Visualization. The group, which was convened by Tom
Naps and Guido Rößling, began work during spring 2002.
Using a groupware tool and a listserv mailing list, the
group discussed a number of issues, prepared and
conducted an on-line survey, and developed a rough draft
of the report before meeting in person during the ITiCSE
conference in Århus, Denmark. Throughout the remainder
of this report, “we” refers to the Working Group, which
was composed of the individuals listed at the beginning of

the report. We also had three remote members, who are
acknowledged in a section at the end of this report.

The impetus for visualization in computing comes from
the inherent abstractness of the basic building blocks of the
field. Intuition suggests that, by making these building
blocks more concrete, graphical representations would help
one to better understand how they work. Visualization
software emerged in the late 1980’s for the purpose of
creating and interactively exploring graphical
representations of computer science concepts [8, 54]. Our
recent surveys of computer science educators suggest a
widespread belief that visualization technology positively
impacts learning. However, experimental studies designed
to substantiate the educational effectiveness of such
visualization technology simply do not bear this out [28].
On top of this, a major deterrent to adopting visualization
that emerged from our pre-conference survey is the time
and effort required for instructors to integrate the
technology into their curricula. These findings point to two
key obstacles to visualization technology’s widespread
adoption:

• From the learner’s perspective, the visualization
technology may not be educationally beneficial.
• From the instructor’s perspective, the
visualization technology may simply incur too much
overhead to make it worthwhile.

Given the belief of computer science educators that
visualization technology, under the right conditions, can
greatly benefit learners and instructors alike, what can be
done to overcome these obstacles? With respect to
educational effectiveness, it makes sense to look more
closely at past experimental studies of effectiveness.
Indeed, closer inspection reveals an important trend in
those studies: that learners who are actively engaged with
the visualization technology have consistently
outperformed learners who passively view visualizations

www.manaraa.com

 132

[28]. For example, visualization technology has been
successfully used to actively engage learners in such
activities as:

• Constructing their own input data sets [40,
Chapter 9],
• Making predictions regarding future visualization
states [11],
• Programming the target algorithm [31],
• Answering strategic questions about the
visualization [23,44],
• Constructing their own visualizations [26].

Given this trend, it makes sense to design further
experimental studies that more closely examine the
educational benefits of various forms of active engagement.
In this report, we present a framework for this type of
empirical study. The framework is flexible enough to allow
such studies to take place both in controlled situations and
in classrooms. Our thesis is that visualization technology,
no matter how well it is designed, is of little educational
value unless it engages learners in an active learning
activity. If this is true, then the key question to consider is
what, if any, forms of active engagement with visualization
technology can have a positive impact on how much a
learner learns.

The second major obstacle to visualization technology
identified in our survey, instructor overhead, is not directly
addressed in this report. However, if experimental results
show that some forms of active engagement with
visualization lead to very positive educational outcomes,
we are hopeful that a variety of educators will begin the
development of instructional materials that take advantage
of those forms of engagement.

Drawing on a review of experimental studies of
visualization effectiveness and well-known best practices
for algorithm visualization, Section 2 motivates our thesis
against the backdrop of current attitudes and best practices
with respect to algorithm visualization use. Section 3
presents a taxonomy of learner engagement with
visualization technology, while Section 4 identifies metrics
for assessing the learning outcomes to which such
engagement may lead. Based on our taxonomy of
engagement and the effectiveness metrics we propose, we
present a framework for empirical studies of algorithm
visualization effectiveness in Section 5. Section 6
concludes by discussing the future of this framework:
studies we are planning, and opportunities for interested
computer science educators to collaborate with us.

2. Background
Interactive visualization has been employed in

computer science education since the 1980s (see, for
example, [8,10]). During that time, a set of “best practices”
has evolved through instructors’ experiences with the
technology. We summarize the most important of these in
Section 2.1. To determine current practice and instructors’
attitudes toward the efficacy and impact of these practices,
we recently conducted a survey of computing educators; we
summarize the key results in Section
2.22.2. In Section 2.3, we summarize the widely mixed
results of past experimental studies of visualization
effectiveness and motivate the need for a new set of
experiments.

2.1 Overview of Best Practices
Pedagogical visualization draws on many related
disciplines, including typography, psychology, and
algorithms. This makes it difficult to summarize the lessons
learned, although some general recommendations about
typography and layout apply. Khuri [35] summarizes
recommendations on display layout, use of color and
sound, and interactivity issues. While there is no agreed-
upon standard for the “commandments of algorithm
animation” [18], the following eleven points are commonly
accepted suggestions drawn from experience:

1. Provide resources that help learners interpret the
graphical representation. As concrete
representations, visualizations may assist learners in
understanding algorithms. However, visualizations
may also be difficult to interpret; learners may find
it difficult to map a visualization to the underlying
algorithm it is designed to represent. The meaning
of the graphical representations and their relation to
program elements can be clarified for learners in
one of two ways: explain the relationship by
embedding the representations in the system using
text or narration, or reinforce the relationship by
allocating instructional time to the topic during the
course.
2. Adapt to the knowledge level of the user. Novice
learners can become quickly overwhelmed by too
many details or windows, and they usually prefer to
test an animation with predefined input data. In
contrast, advanced learners may benefit from
additional facilities for controlling complexity and
for navigation, or from the capability to invent input
data to more fully exercise algorithms. In addition,
novices may more easily understand the structure of
animations that are based on well-known metaphors,
for example, comic strips [4], theater performances
[21], electronic books [9] or slide presentations [43].
In contrast, advanced learners may benefit from
facilities for large data sets and multiple views, such
as those provided by systems like BALSA [8].
3. Provide multiple views. An algorithm can be
watched in many different ways, for example,
control flow in source code or state of data
structures. Providing the learner with multiple views
can facilitate a better understanding of the
algorithm. Windows displaying different views
should be coordinated to show consistent
information. In particular, it is very useful to
provide a program animation view (where code is
shown and highlighted as the program executes)
simultaneously with more abstract algorithm
animation views. In this way, the learner can relate
algorithm actions to program code. An alternative
approach is providing pseudo-code instead of raw
code [57]. If pseudo-code nodes are enhanced with
expand/contract facilities (i.e. simulating stepwise
refinement), animations should be coordinated
accordingly to ensure an adequate level of
granularity. Finally, it can be advantageous from an
educational point of view to offer different views
sequentially. For instance, the HalVis system
[22,23] was designed to show animation in three

www.manaraa.com

 133

steps: a familiar metaphor that could help learners
understand the problem, a detailed animation with
synchronous multiple views and explanations, and a
large example of an application.
4. Include performance information. Efficiency
analysis is an important part of algorithmic
understanding. Thus, including data collected about
the algorithm execution can enhance understanding
of the algorithm’s efficiency. Another way of
reinforcing performance information is by animating
several algorithms simultaneously, as in the Sorting
Out Sorting videotape [2]. Different rates for
solving the same problem are visually deduced by
the user.
5. Include execution history. After several steps in
the algorithm animation, it is common for the
learner to forget previous steps, to have
misunderstood some previous step in the algorithm,
or simply to want to have a global view of the
history. Making historical information available to
the learner can help overcome these problems.
History can be explicitly provided or can be
implicitly integrated into some of the algorithm
views. In JFLAP [29] when stepping through a
nondeterministic example, one can select any
configuration and see the history of the path from
the start state to the chosen configuration.
6. Support flexible execution control. Flexible
control of the visualization should be possible,
including the ability to execute the visualization
both forwards and backwards (see, for example, [6,
53, 56]). A simple but effective user interface for
visualization control mirrors a video player, with
buttons for the following functions: stop, pause, one
step forward, continuous advance, advance to the
end, one step backwards and backtrack to the
beginning [43].
7. Support learner-built visualizations. Stasko [55]
advocates that learners build their own
visualizations. Such construction enables learners to
gain insights into what is important about an
algorithm under study. At the same time, it creates
for learners a greater sense of responsibility through
the construction of their own artifacts [24].
8. Support custom input data sets. Allowing
learners to specify their own input data sets (for
example, [8, 38]) engages them more actively in the
visualization process. It allows the learner to explore
the animation freely in order to discover how the
algorithm executes on a range of data.
9. Support dynamic questions. To encourage
learners to reflect on a visualization, visualization
systems can use a “pop quiz” approach by
periodically presenting short questions requiring a
response from the learner [22, 44]. It is often useful
to provide two kinds of questions. Some questions
can pop up in random order, but in an appropriate
context. Such questions focus the learner’s attention
on specific issues and promote self-evaluation as a
means of improving comprehension. Other
questions may be placed at critical points beyond

which learners cannot proceed until they correctly
answer the questions.
10. Support dynamic feedback. Learners
should be provided with dynamic feedback on their
activities within a visualization system. For
example, Korhonen and Malmi [37] describe a
visualization system that presents learners with
graphical representations of algorithms and requires
the learners to manipulate these representations in
order to simulate the algorithm. The system then
provides learners with automatic, dynamic feedback
about the correctness of such simulations.
11. Complement visualizations with
explanations. Educational research rooted in dual-
coding theory suggests that visualizations may be
better understood if they are accompanied by
explanations [41]. Such integration can be made in a
number of different ways, such as writing an
accompanying explanation in a coordinated
graphical window or providing a coordinated audio
track for the visualization. A more traditional
approach to explanations, based on paper books, is
also possible. In particular, Bazik et al. [3]
emphasize the need for animations to be tightly
integrated with textbooks if such animations are to
be integrated naturally into a course.

In considering the above recommendations, an
educator must weigh carefully how to adapt and apply
them, since there is no single visualization system or
activity that is best for all learners. In fact, the design of an
animation system and its animations should be as carefully
planned as any other design activity (see for example,
[34]).

2.2 Survey of Current Practice
In this section, we describe the process and results from
three surveys, two of which were designed and carried out
by our Working Group. We first describe the design and
content of all three surveys. Next, we profile the
respondents and describe their teaching contexts. We go on
to explore the responses related to visualization and its use
in teaching. We conclude by discussing our impressions
from the survey results and implications for further work.

2.2.1 Description of the surveys
As the Working Group began to collaborate a few weeks
before the ITiCSE 2002 conference in Århus, we
considered a number of resources. One item that was
circulated was a summary of a pencil-and-paper survey
conducted by Scott Grissom during the ITiCSE 2000
conference in Helsinki, Finland [19]. The results from
Grissom’s survey motivated us to develop a new, more
detailed on-line survey that we conducted prior to the
conference. Using the items from Grissom’s survey as a
starting point, we successively refined the items to provide
a basis that would guide the working group in carrying out
its agenda.

The working group’s on-line survey was designed
using the tool SurveySuite (http://intercom
.virginia.edu/SurveySuite), which allows a researcher to
compose surveys from a pre-defined menu of item types.

www.manaraa.com

 134

To complete the survey, a respondent receives a direct
URL, fills in the form with their responses to the various
items, and clicks a button to submit their responses. Once
submitted, responses are accumulated in an underlying
database, from which the researcher can obtain profiles of
the responses-to-date and download for local analysis
spreadsheets containing the responses.

The final pre-conference survey contained four
sections. The first section polled respondents for their
experiences with visualizations. We included items
designed to gauge both the attitude toward and experience
with various types of visualization. Some items were
designed to detect the use of mediated transfer (that is, how
instructors help learners relate their visual experience to the
concepts being taught in the course). The second section of
the pre-conference survey was designed to provide a profile
of each respondent’s teaching situation. Items addressed the
availability and physical set-up of equipment, the type and
size of classes, the number of learners and faculty members
at the institution, and how extensively various types of
visualization are used. The third section of the pre-
conference survey sought information about the individual
respondents, including how long they have taught, location
of their institutions, and sources they use for information
about visualization. We also requested contact information
as well as information about how the respondents learned
about the pre-conference survey. The final section, Closing
Thoughts, provided respondents with an opportunity to
share any other thoughts or information.

By the time we arrived in Århus for the ITiCSE 2002
conference, we had collected 29 responses. As we
discussed the results (which are presented shortly), we
decided that it would be useful to conduct a quick and very
informal index card survey of conference attendees. Our
index card survey had only two items: 1) Using
visualizations can help learners learn computing science [5-
point scale: Strongly agree; Agree; Neutral/No opinion;
Disagree; Strongly disagree], and 2) How often do you use
algorithm visualizations in your teaching? [4-point scale:
Extensively (every week); Frequently (every other week);
Occasionally (once or twice per term); Never]. To conduct
the survey, we distributed index cards at the beginning of
the conference session during which each Working Group
was to present information about the group’s work. We
requested that audience members should quickly answer
the two items on the front of their index cards; we also
invited respondents to add any comments or questions on
the back of the index card. We collected the completed
index cards before we presented results from our pre-
conference survey.

2.2.2 Background of respondents and their
institutions

In this section, we summarize the results from three
surveys: Grissom’s survey from ITiCSE 2000, our pre-
conference on-line survey, and our ITiCSE 2002 index card
survey. Table 1 summarizes the number of

Table 1: Summary information for the three surveys
respondents and gives some background information about
the respondents and their institutions. Full results of the
pre-conference survey, including the full set of items, are
available on the working group’s web site at

http://www.animal.ahrgr.de/iticseWG.html
.

In terms of the size of the respondents’ institutions, for
the Grissom survey the average enrollment was 7893
students. For the pre-conference survey, the responses to
item 2.1 showed that the average enrollment across the 29
respondents’ institutions was 7402 students, with the
distribution of size representing the full range of
possibilities: Two respondents (7%) came from institutions
with 500 or fewer students; three respondents (10%) had

501 to 1000 students at their institution; four institutions
(14%) had from 1001 to 2000 students; six institutions
(21%) had 2001 to 4000 students; five respondents (17%)
each reported the ranges 4001 to 7500 students and 7501 to
15000 students enrolled; and four institutions (14%) had at
least 15001 students enrolled.

Item 2.2 from the pre-conference survey asked
respondents approximately how many students are studying
computing as a major, minor, or service course at their
home institutions. The form of the response for each area
was open-ended, so respondents entered their own numeric
responses rather than being constrained to a menu of
choices. The number of majors reported varied from 50 to
3000, with nine (31%) reporting 50 to 100 majors, sixteen
(55%) reporting 101 to 1000 majors, and five (17%)
reporting 1001 to 3000 majors. There was no apparent
relationship between size of institution and number of
computing majors reported. For two respondents (7%), the
size of the institution matched the number of majors (1500
and 2000, respectively); as expected, neither of these
respondents reported any students with computing as a
minor or service course. Two respondents did not respond
to this item. As a point of comparison, the Grissom survey
resulted in an average of 559 computing majors, while the
average for the pre-conference survey was 561 computing
majors.

For the number of students with computing as a minor
and in computing service courses, nine (31%) and ten
(38%) respondents either reported none in the respective
category or gave no response. The number of minors
reported ranged from 5 to 3900, with twelve (41%)
reporting 10 or fewer minors, six (21%) reporting 11 to 50
minors, four (14%) reporting 51 to 600 minors, and five
(17%) reporting 1000 to 3900 minors. The number of

 Grissom
Survey
(July
2000)

Pre-
conference
Survey
(April-June
2000)

Informal
Index Card
Survey
(June
2000)

Number of
respondents

91 29 66

Nr. of
countrries

21 11 -

Average
teaching
experience
[years]

17 14 -

Avg. number
CS faculty

17 23 -

Population
surveyed

ITiCSE
2000
Particip.

Various
listserv lists

ITiCSE
2002 Atten
dees

www.manaraa.com

 135

students reported in service courses ranged from 10 to
5000, with fourteen (48%) reporting 100 or fewer students,
seven (24%) reporting 101 to 900 students, and six (21%)
reporting 1000 to 5000 students in service courses. Once
again, there was no apparent relationship between number
of students studying computing as a minor or service
course and the total number of students enrolled in the
institution. The Grissom survey did not consider the
number enrolled in minor or service courses. For the pre-
conference survey, averaging only over the non-zero/non-
missing responses, there were an average of 495 minors
and an average of 818 students in service courses.

Items 2.3 and 2.4 from the pre-conference survey asked
for the number of faculty responsible for teaching
computing courses and the number of faculty, including the
respondent, who use dynamic visualizations to support
learning. The number of computing faculty ranged from 2
to 100, with eight (28%) reporting 2 to 8 faculty members,
twelve (41%) reporting 11 to 30 faculty members, five
(17%) reporting 40 to 100 faculty members, and two (7%)
omitting this item. The number of faculty using dynamic
visualizations ranged from 1 to 20, with three respondents
(10%) each reporting they had 1, 2, 4, and 5 faculty
members using dynamic visualization, eight (28%)
reporting 3 faculty members, two reporting 10 faculty
members, three (10%) reporting 15 to 20 faculty members,
two (7%) reporting that no faculty are using dynamic
visualization, and two (7%) who omitted this item. For the
pre-conference survey, the average number of computing
faculty was approximately 24; the average number of
faculty members using dynamic visualizations to support
learning was slightly less than 5. On the Grissom survey, an
average of 17 faculty members were responsible for
teaching computing courses at the respondents’ institutions;
no results were available for the number of computing
faculty who use computer-based visualizations to support
student learning.

Comparing the responses to items 2.3 and 2.4 from the
pre-conference survey, the ratio of faculty using dynamic
visualizations to the number of computing faculty at an
institution ranges from 4% to 75%. Three respondents
(10%) reported a ratio in the range 4% to 10%, nine (31%)
reported a ratio in the range 11% to 20%, ten (34%)
reported a ratio in the range 31% to 50%, and two (7%)
reported a ratio of 75%. One response was hard to interpret
because the

respondent said that the number of faculty using
dynamic visualizations was greater than the number of
faculty responsible for teaching computing courses (17 to
2).

Items 2.6 and 2.7 on the pre-conference survey asked
the respondent to report the most common classroom set-
ups at their institution and the classroom set-up they
personally used most often. Table 2 summarizes the results
of these two items. The most common set-up, reported by
about half of the respondents, is that the computer and a
ceiling-mounted projection system remain in the room.
Nearly as common (reported by 41%) are classrooms where
the projector is permanently mounted and the instructor
brings their own computer. It is equally common (reported
by 41%) to have the students sitting at terminals during
class but with no central coordination with the instructor’s

equipment. The type of classroom that respondents
normally teach in reflects the same trends as observed in
the common classroom set-ups.

In terms of the size of the respondents’ institutions, for
the Grissom survey the average enrollment was 7893
students. For the pre-conference survey, the responses to
item 2.1 showed that the average enrollment across the 29
respondents’ institutions was 7402 students, with the
distribution of size representing the full range of
possibilities: Two respondents (7%) came from institutions
with 500 or fewer students; three respondents (10%) had
501 to 1000 students at their institution; four institutions
(14%) had from 1001 to 2000 students; six institutions
(21%) had 2001 to 4000 students; five respondents (17%)
each reported the ranges 4001 to 7500 students and 7501 to
15000 students enrolled; and four institutions (14%) had at
least 15001 students enrolled.

Item 2.2 from the pre-conference survey asked
respondents approximately how many students are studying
computing as a major, minor, or service course at their
home institutions. The form of the response for each area
was open-ended, so respondents entered their own numeric
responses rather than being constrained to a menu of
choices. The number of majors reported varied from 50 to
3000, with nine (31%) reporting 50 to 100 majors, sixteen
(55%) reporting 101 to 1000 majors, and five (17%)
reporting 1001 to 3000 majors. There was no apparent
relationship between size of institution and number of
computing majors reported. For two respondents (7%), the
size of the institution matched the number of majors (1500
and 2000, respectively); as expected, neither of these
respondents reported any students with computing as a
minor or service course. Two respondents did not respond
to this item. As a point of comparison, the Grissom survey
resulted in an average of 559 computing majors, while the
average for the pre-conference survey was 561 computing
majors.

For the number of students with computing as a minor
and in computing service courses, nine (31%) and ten
(38%) respondents either reported none in the respective
category or gave no response. The number of minors
reported ranged from 5 to 3900, with twelve (41%)
reporting 10 or fewer minors, six (21%) reporting 11 to 50
minors, four (14%) reporting 51 to 600 minors, and five
(17%) reporting 1000 to 3900 minors. The number of
students reported in service courses ranged from 10 to
5000, with fourteen (48%) reporting 100 or fewer students,
seven (24%) reporting 101 to 900 students, and six (21%)
reporting 1000 to 5000 students in service courses. Once
again, there was no apparent relationship between number
of students studying computing as a minor or service
course and the total number of students enrolled in the
institution. The Grissom survey did not consider the
number enrolled in minor or service courses. For the pre-
conference survey, averaging only over the non-zero/non-
missing responses, there were an average of 495 minors
and an average of 818 students in service courses.

Items 2.3 and 2.4 from the pre-conference survey asked
for the number of faculty responsible for teaching
computing courses and the number of faculty, including the
respondent, who use dynamic visualizations to support

www.manaraa.com

 136

learning. The number of computing faculty ranged from 2
to 100, with eight (28%) reporting 2 to 8 faculty members,
twelve (41%) reporting 11 to 30 faculty members, five
(17%) reporting 40 to 100 faculty members, and two (7%)
omitting this item. The number of faculty using dynamic
visualizations ranged from 1 to 20, with three respondents
(10%) each reporting they had 1, 2, 4, and 5 faculty
members using dynamic visualization, eight (28%)
reporting 3 faculty members, two reporting 10 faculty
members, three (10%) reporting 15 to 20 faculty members,
two (7%) reporting that no faculty are using dynamic
visualization, and two (7%) who omitted this item. For the
pre-conference survey, the average number of computing
faculty was approximately 24; the average number of
faculty members using dynamic visualizations to support
learning was slightly less than 5. On the Grissom survey, an
average of 17 faculty members were responsible for
teaching computing courses at the respondents’ institutions;
no results were available for the number of computing

faculty who use computer-based visualizations to support
student learning.

Comparing the responses to items 2.3 and 2.4 from the
pre-conference survey, the ratio of faculty using dynamic
visualizations to the number of computing faculty at an
institution ranges from 4% to 75%. Three respondents
(10%) reported a ratio in the range 4% to 10%, nine (31%)
reported a ratio in the range 11% to 20%, ten (34%)
reported a ratio in the range 31% to 50%, and two (7%)
reported a ratio of 75%. One response was hard to interpret
because the respondent said that the number of faculty
using dynamic visualizations was greater than the number
of faculty responsible for teaching computing courses (17
to 2).

Items 2.6 and 2.7 on the pre-conference survey asked
the respondent to report the most common classroom set-
ups at their institution and the classroom set-up they
personally used most often. Table 2 summarizes the results
of these two items.

Common classroom set-
ups

Classroom taught in
most often

Computer and ceiling-mounted projection system
remain in the room

 14 (48%) 11 (38%)

Projector remains in class-room, bring own
computer

 12 (41%) 5 (17%)

Students sit at terminals, but no central coordination
w. instructor’s equipment

 12 (41%) 4 (14%)

Computer(s) & projector(s) delivered to the
classroom as needed

 8 (28%) 3 (10%)

Computers and projectors not available 5 (17%) 1 (3%)
Projector remains in classroom, computer is
delivered

 4 (14%) 1 (3%)

Students sit at terminals that are coordinated with
instructor’s equipment (e.g. instructor can see what
student is doing)

 4 (14%) 1 (3%)

Computer remains in classroom, projector delivered
as needed

 1 (3%) 3 (10%)

Table 2: Common classroom set-ups and classroom set-up used most often

The most common set-up, reported by about half of the
respondents, is that the computer and a ceiling-mounted
projection system remain in the room. Nearly as common
(reported by 41%) are classrooms where the projector is
permanently mounted and the instructor brings their own
computer. It is equally common (reported by 41%) to have
the students sitting at terminals during class but with no
central coordination with the instructor’s equipment. The
type of classroom that respondents normally teach in
reflects the same trends as observed in the common
classroom set-ups.

The Grissom survey included an item similar to item
2.7 from the pre-conference survey: “Which describes the
classroom you teach in the most often? ”; It is interesting to
note that the percentage of respondents with classroom set-
ups with permanently installed computer and ceiling-
mounted projection systems was much higher among the 91
respondents for the Grissom survey (62%) than for the 29
respondents for the pre-conference survey (48%). The
number of respondents reporting that a computer and
projector are delivered to the classroom as needed was

similar: 21% for the Grissom survey and 28% for the pre-
conference survey. On the Grissom survey, 10% of the
respondents reported that computers and projectors were
not available, compared to 17% from the pre-conference
survey. The only other category reported on the Grissom
survey, that the rooms had permanently installed computers
and the projector was delivered as needed, included 7% of
the respondents, compared to 3% of the respondents for the
pre-conference survey.

With respect to the teaching experience of respondents,
the respondents for the Grissom survey reported an average
of 17 years. For the pre-conference survey, responses on
item 3.1 resulted in an average of 14 years of teaching
experience, with two respondents (7%) reporting 1-4 years,
nine respondents (31%) 5-10 years, five respondents (17%)
11-14 years, seven respondents (24%) 15-22 years, and six
respondents (21%) 24 or more years of experience.

www.manaraa.com

 137

2.2.3 Results related to using visualization in
teaching

The initial item on the pre-conference survey, item 1.1,
asked respondents to indicate their strength of agreement
with the statement “Using visualizations can help students
learn computing concepts.” All 29 respondents either
strongly agreed or agreed with this statement (59% and
41%, respectively). The Grissom survey did not include
such an item. On the index card survey, twenty nine of 67
respondents (43%) strongly agreed with this statement,
thirty three (49%) agreed, and the remaining five (8%)
indicated that they were neutral or had no opinion. Out of
the 93 computer science educators who responded to this
question in the surveys, none disagreed at all with the
premise that visualizations can help students as they learn
computing concepts. This strong perception among
educators that visualization can help makes the lack of
direct supporting evidence (see Section 2.3) particularly
intriguing.

In polling respondents for how they use visualization,
the Grissom survey addressed the use of both static and
dynamic visualizations in the classroom. As shown in
Table 3, all respondents indicated that they used static
visualizations such as slides, images, and hand-drawn
figures on the board at least sometimes. For dynamic
visualizations such as computer software, animations, and
interactive demonstrations, over half of the respondents
used dynamic visualizations in the classroom only a few
times per term, with 13% never making use of dynamic
visualizations. Only a quarter of the respondents used
dynamic visualizations at least once per week. The Grissom
survey also looked at how students used dynamic
visualizations outside of class. Nearly one quarter of the
respondents said that students never used dynamic
visualizations outside of class; slightly more than half
reported that students used dynamic visualizations outside
of class at least a few times per term.

 Almost

every day
Once per

week
A few

times per
term

never

Static 72% 20% 8% 0%
Dynamic 10% 23% 54% 13%
Dynamic
outside
class

 5% 19% 53% 23%

Table 3: Frequency of Visualization Use in Grissom’s
Survey

For the pre-conference survey, we chose not to ask

respondents about their use of static visualization, since we
believe that virtually all computing instructors use some
form of static visualization frequently. Thus, the pre-
conference survey focused solely on the use of dynamic
visualization. When asked how they have used dynamic
visualizations in item 1.2, 97% (all but one respondent)
replied that they at least occasionally demonstrate
visualizations during classroom lectures. [These
percentages pool the responses for the three positive
options used extensively (about every week), used

frequently (about every other week), and used on occasion
(at least once or twice per term).] About two-thirds of the
respondents reported that they make visualizations
available for student use outside of closed laboratories,
nineteen (66%) with prior guidance or instruction and
seventeen (59%) without prior guidance or instruction.
Seventeen of the respondents (52%) indicated that they
required student use in a closed, supervised lab, and the
same number indicated that visualizations are available for
optional student use in a closed, supervised lab. Only
twelve of the respondents (41%) require student use during
classroom lectures.

The second item on the index card survey asked
ITiCSE 2002 participants to indicate how frequently they
use algorithm visualizations in their teaching. Two out of
64 respondents who answered this item (3%) replied that
they use visualizations nearly every week, fifteen (23%)
that they use them every other week, and twenty nine
(45%) that they use visualizations only once or twice per
term. Eighteen respondents (28%) indicated that they never
use such visualizations.

All of these responses about frequency of use point to
the fact that, even among educators who use visualization,
few tightly integrate it with other aspects of their courses.
This contrasts sharply with the experience of educators at
Brown University, where they found early success with
Marc Brown’s BALSA system [8]. They claimed:

Much of the success of the BALSA system at
Brown is due to the tight integration of its
development with the development of a textbook
and curriculum for a particular course. BALSA was
more than a resource for that course - the course was
rendered in software in the BALSA system [3].

We will return to the issue of whether students are
sufficiently familiar with the visualization tools they use
when we discuss covariant factors in Section 4.4.

In interpreting the pre-conference survey, we were also
curious about certain combinations of ways in which the
respondents use dynamic visualization. For example, six
respondents (21%) require that students use visualizations
during classroom lectures as well as for both required and
optional use in a closed, supervised lab. Five additional
respondents (17%) who require use during classroom
lectures also have some sort of use in a closed, supervised
lab; two of these (7%) require use in the lab setting, while
for three (10%) such use is optional. In another
comparison, we discovered that ten respondents (34%)
make visualizations available for student use outside of a
closed lab setting both with and without prior guidance and
instruction. An additional fourteen respondents make
visualizations available for student use outside of a closed
lab setting, with a split of eight (28%) giving prior
guidance or instruction and six (21%) without prior
guidance.

Item 1.3 of the pre-conference survey asked
respondents to indicate all ways in which learners use
visualization. Three of the respondents (10%) indicated that
students do not directly use visualizations. Nine of the
respondents (31%) indicated that students must construct
their own visualizations, for example, as homework. Seven
of the respondents (24%) indicated that their students have
tools available so they can construct their own

www.manaraa.com

 138

visualizations. Six of the respondents (21%) indicated that
students are encouraged to construct their own
visualizations. None of these respondents chose the option
students present their own visualizations. Four respondents
(14%) filled in the other option: one indicated that students
have the tools they make available helps student to
visualize program structure; another indicated "passive
use"; a third said the visualizations were pre-built for the
students; and the fourth said that students use but do not
construct visualizations.

Item 1.4 of the pre-conference survey asked what
learners do along with the visualization. This question was
designed in part to elicit information about the use of
mediated transfer. [These percentages pool the responses
for the three positive options used extensively (about every
week), used frequently (about every other week), and used
on occasion (at least once or twice per term).] Twenty six
of the respondents (90%) indicated that students watch the
visualization in class. Twenty one (72%) said that students
use the visualization in lab exercises. Twenty one (72%)
replied that students must construct the visualization, while
twenty (69%) have students experiment with different data
sets. Fifteen (52%) ask students to give brief oral responses
during class to questions about the visualization. Thirteen
of the respondents (45%) say students must give written
answers to describe their understanding of the visualization
in an open-ended format such as an essay question. Eleven
(38%) ask students to give written answers to closed-form
questions about the visualization, such as fill-in-the-blank,
multiple-choice, or short answer. Ten (34%) ask students to
give longer, more open-ended oral responses to describe
their understanding of the visualization. In the final
comments, one respondent explained that one way they use
visualizations is to ask students “what if” questions; the
student must then develop a hypothesis and test it.

When asked on item 1.5 of the pre-conference survey
to describe any ways in which they had used visualizations
besides the options mentioned in items 1.2 - 1.4, eleven
respondents provided comments. One respondent described
the use of stacking cups to demonstrate sorting algorithms;
students then study Java applets demonstrating the sorts,
and finally must transfer that experience to sorting the cups,
including a physical demonstration of the sorting
algorithms with the stacking cups as part of their exam.
Another respondent mentioned using conceptual maps for
working with object-oriented programming concepts. A
third respondent clarified that students construct
visualizations, show how given data structures are modified
by given algorithms, and then must present the state of the
data structure in a visual form that is submitted to a server
that assesses it and gives feedback for the student. Yet
another respondent said that students learn to express data
models using entity relation diagrams and relational
schema, and work extensively with data-structure diagrams
such as indexes, B-trees, and B+ trees to study search
operations as well as the effects of operations such as insert
and delete. This respondent also has students use many
graph and tree models to represent different problems and
to design solutions using graph algorithms. Another
respondent said that students select to work with a
visualization package to produce a non-scientific data
visualization using atypical visualization paradigms, for

example, in genealogy. Another respondent values
visualization to help make issues tangible and uses
visualization for simple examples such as how compilation
or event composition works. Another respondent described
a system that has been used world-wide and provides
students with an environment where they can test virtually
every important concept in geometric modeling. This
software is used in a classroom that merges the ideas of lab
and lecture to do demonstrations, design, and exercises.
Students are also required to use this system to generate test
data for their programming assignments. This respondent
also discusses another system, designed to teach multi-
threaded programming, with an automatic visualization
component that can be activated automatically by a user
program. Students are required to use this system for their
programming assignments, which allows them to see the
concurrently running threads, the dynamic behavior of the
threads, and all activities of synchronization primitives.

Item 1.6 of the pre-conference survey was a free-
response item that asked respondents to explain their
pedagogical aim in using visualizations. Twenty-two
respondents (76%) provided comments. Several
respondents mentioned that dynamic visualization is useful
in explaining dynamic behavior or state changes. Others
mentioned that the use of dynamic visualization helps
improve comprehension of both theoretical and practical
issues because it makes the ideas more tangible. One
respondent observed that dynamic visualization gives
students immediate feedback and also helps students
understand patterns that abound in the structures. Another
respondent has observed in twenty years of teaching that
everyone learns better through visualization. This
respondent believes that visualization and kinetic
experience better instill learning in long-term memory than
do other sensory and cognitive processes and concluded
with the observation that learners better manipulate
symbols when they have visual representations of process.
A second respondent explained that visualizations have
progressed from a series of PowerPoint slides to GIF
animations to flash “movies”. This respondent’s students
claim that visualization helps them understand how the
algorithms work. Another respondent uses visualizations to
convey more difficult or visually oriented material,
explaining that dynamic visualizations express such ideas
more clearly and succinctly than words do. Another
respondent expressed a similar notion, observing that when
students exercise on a conceptual level how algorithms
work, they understand the algorithms better. This
respondent went on to say that visual representation of the
data structure supports this conceptual understanding,
because implementation details no longer blur the students’
view. Another respondent has used visualizations to help
students achieve a deeper understanding of class concepts.
This respondent has found that dynamic visualizations
reach a broader cross-section of students than do some
other pedagogical techniques. Another respondent
commented that visualizations are fun for students and
instructors alike. Yet another respondent reinforced this
view by observing that visualization provides better
motivation for students as well as better illustration of the
dynamic nature of algorithms and data structures. This
respondent values the use of thought-provoking questions

www.manaraa.com

 139

combined with visualization, since this tends to encourage
interesting discussions. Another respondent described the
use of dynamic visualizations that are created on the fly
from source code; paradoxically, these visualizations are
also fairly static, in that there is no animation. This
respondent feels that these visualizations express
relationships between classes in a much more obvious way
than is possible with a textual description. In general, this
respondent feels that by presenting the same concepts both
verbally and graphically, students seem to profit from
experiencing two approaches to the same material.

Item 1.7 asked respondents to list courses at their
institutions where dynamic visualization is used regularly.
The most frequently named course was data structures,
both with and without mention of an algorithms
component. Other courses mentioned by more than one
respondent were CS1, introductory programming (perhaps
the same as CS1?), computer networks, artificial
intelligence, software engineering, databases, and survey of
CS/CS0. Courses that were mentioned once include
compilers, computer architecture, CS theory, data mining,
data visualization, image processing, office technologies,
multimedia and Internet technologies, scientific
visualization, and simulation and modeling.

Item 1.8 asked respondents to indicate benefits that
they had experienced from using visualization; the form of
the item allowed respondents to select any number of the
options. In designing the items, we were unable to use
results from the Grissom survey; while that survey included
a similar item, the results were unavailable. Instead, we
generated the options through an informal process of
polling working group members and colleagues. In
decreasing order of frequency based on the pooled
responses for the two positive options a major benefit and a
minor benefit, the benefits were:

• 90%: the teaching experience is more enjoyable
• 86%: improved level of student participation
• 83%: anecdotal evidence that the class was more
fun for students
• 76%: anecdotal evidence of improved student
motivation
• 76%: visualization provides a powerful basis for
discussing conceptual foundations of algorithms
• 76%: visualization allows meaningful use of the
available technology
• 72%: anecdotal evidence of improved student
learning
• 62%: (mis)understandings become apparent when
using visualization
• 52%: objective evidence of improved student
learning
• 48%: interaction with colleagues as a benefit

Item 1.9 was a free-response item that allowed
respondents to list additional benefits they had experienced
from using visualization. Eight respondents (28%) provided
comments. One respondent mentioned the advantage of
anonymous help-seeking. Another mentioned that with
visualization, big-O measures of efficiency have been
transformed from one of the most difficult concepts into a
straightforward one. This respondent also observed that
students spend much more time when visualization is
involved. Another respondent remarked that data

visualization is a good way to get students thinking about
space, time, processes, and communication. Yet another
respondent felt that dynamic visualizations capture
students’ attention, particularly when color and sound are
used effectively. Another respondent had no evidence to
support this observation, but felt that students grasp the
main concepts quicker and more easily (and with less effort
from the instructor). Another respondent observed that
algorithm simulation exercises promote learning but at the
same time was uncertain whether this benefit comes from
compulsory exercises and automatic assessment of the
submitted solutions, or from the visual form used when
constructing the solutions.

For the Grissom survey, respondents were asked to
describe up to two reasons they were reluctant or unable to
use visualizations. The reasons listed included time (for
developing visualizations, installing software, transitioning
into the classroom, learning new tools, and preparing
courses); equipment (including concerns about availability
and reliability); the lack of effective and reliable software;
platform dependence and the lack of effective development
tools; the difficulty of adapting existing materials to teach
what and how the educator wants to teach; the fact that
students are too passive if they simply watch
demonstrations in a darkened room; a concern that AV may
hide important details and concepts; and the lack of
evidence of effectiveness.

Item 1.10 for the pre-conference survey asked about
factors that make the respondent or the respondent’s
colleagues reluctant or unable to use dynamic
visualizations. To develop the options for this item, we
began from the list of factors from the Grissom survey
presented in the previous paragraph. Respondents could
select any combination of options that reflect factors they
believe discourage the use of dynamic visualization. In
decreasing order of frequency based on pooling the
responses for the two positive options a major factor and a
minor factor, the impediments were:

• 93%: time required to search for good examples
(on the Web, in the literature)
• 90%: time it takes to learn the new tools
• 90%: time it takes to develop visualizations
• 83%: lack of effective development tools
• 79%: time it takes to adapt visualizations to
teaching approach and/or course content
• 69%: lack of effective and reliable software
• 69%: time it takes to transition them into the
classroom
• 66%: unsure of how to integrate the technology
successfully into a course
• 66%: time it takes to install the software
• 59%: lack of evidence of effectiveness
• 55%: concerns about the equipment or
presentation location (e.g. darkened room)
• 48%: unsure of how algorithm visualization
technology will benefit students
• 38%: students are too passive
• 31%: AV may hide important details and
concepts

Item 1.11 of the pre-conference survey was a free-
response item that asked respondents for reasons other than
those listed in item 1.10 that make the respondent or

www.manaraa.com

 140

colleagues reluctant to use dynamic visualizations. Seven
respondents (24%) provided such comments. One
respondent was unable to share colleagues’ ideas about
visualization, having never discussed the topic with them in
any detail. Another respondent, a self-described developer
of visualization tools, observed “the above questions are
not my concerns”. Another comment was a reaction to the
option in item 1.10 that students are too passive when
viewing visualizations; this respondent observed that, to the
contrary, students become more active when they are
dealing with visualizations. Another respondent remarked
that the impediment is being too busy with other work to
make big changes in course content and presentations. Yet
another respondent mentioned cost and resource issues.
Another respondent is convinced that the most profound
reason colleagues do not use dynamic visualization is a
personality characteristic that permits one teacher to engage
in high risk behavior such as using children’s toys as
instructional props. This respondent observes that some
educators feel it is very high risk to engage in this sort of
extravert activity.

In item 1.12 for the pre-conference survey, we
provided several options for techniques respondents might
use to evaluate the effectiveness of visualization.
Respondents could select any number of the options. In
decreasing order of frequency based on pooling the
responses for the two positive options major source of
information and minor source of information, the most
often used evaluation techniques were:

• 83%: informal feedback during class
• 83%: informal feedback outside of class
• 52%: brief paper-and-pencil questionnaire at the
end of the term
• 48%: brief paper-and-pencil questionnaire during
class
• 45%: informal comparison of results between two
or more groups
• 34%: on-line questionnaire at the end of the term
• 21%: on-line questionnaire during class

Respondents were invited to elaborate on their
evaluation approach(es) and results in item 1.13, a free-
response item. Five respondents (17%) provided such
comments. One respondent mentioned assessing student
work using pre-defined objectives and rubrics. Another
respondent had used a pre-test, a post-test, and an
anonymous attitudinal survey that includes more than 40
questions for each course. The attitudinal survey permitted
students to rate each topic and feature of the visualization
tool. Another respondent has compared student behaviors
from before beginning to use visualization and simulations
to behaviors after using these techniques. This respondent
has observed a profound difference between the student’s
being able to reproduce code and being able to physically
manipulate a group of physical objects such as people or
stacking cups. The fourth respondent described evaluation
work that concentrates on the effect of automatic
assessment of algorithm simulation exercises. The fifth
respondent had just started using a formal approach to the
evaluation of visualizations.

2.2.4 Discussion of results
The respondents to the pre-conference survey seemed

generally knowledgeable about visualization and convinced
that visualization can make a difference in helping learners
better learn concepts. As evidence of the overall knowledge
of the respondent pool, eleven respondents from the pre-
conference survey (38%) indicated that they had created
their own visualization tools from scratch.

When asked to indicate their level of agreement with
the statement Using visualizations can help learners learn
computing concepts, all respondents for the pre-conference
survey and 93% of the respondents for the index card
survey agreed or strongly agreed. That is, among these 98
computing educators, only five responded that they were
neutral or had no opinion; no one disagreed with the
statement to any degree. This overwhelming belief that
visualization can improve learning is somewhat surprising
given the lack of empirical evidence that visualization
really does help. Our concern that the results from the pre-
conference survey were biased toward individuals who
were favorably inclined toward the use of visualization led
us to design the index card survey. We believed that folks
attending ITiCSE 2002 were less likely to be biased
favorably toward visualization than the individuals who
chose to complete the pre-conference survey. Thus, the
index card survey strengthened our understanding that
computing educators are convinced that visualization can
make a difference in helping learners better learn concepts.

While none of the surveys addressed the effectiveness
of visualizations that produce a sequence of discrete
snapshots versus those that portray an algorithm’s
execution via a smoothly continuous animation, two
respondents volunteered knowledgeable commentary. They
observed that continuous animation offers no real
advantage in the learning that occurs. One of these
respondents indicated that smooth animations “are not as
useful since there is little time for the learner to notice
patterns. It is better to lay out the frames in sequence or in
other arrangements to allow viewers to look for patterns
without time pressure”. The other response came from a
psychologist studying the effectiveness of visualizations in
a variety of learning contexts. This respondent indicated
“As for animations, there are no well-controlled studies
showing any advantages of animated over still graphics in
teaching. ... We give a cognitive analysis of why
animations aren’t more successful. In addition, we have
some half dozen studies of our own where visualizations
helped over equivalent text, but animated visualizations
were no better than static ones.” These observations lead us
to wonder about the learning pay-off, if any, for smooth
animations. While many individuals involved in
visualization research have worked long and hard to
achieve smooth animations, this type of comment suggests
that such efforts may have little or no influence in
improving learning.

A dilemma that may be inescapable when developing
animations is the very personal nature of the visual
mapping in the viewer’s mind and what the graphics can
depict. One respondent observed “There are too many
journals and conferences. I rarely used web repositories
because the tools that I want are rarely available or not up
to my and my students’ expectation.” This same respondent

www.manaraa.com

 141

added in another response “Most visualization tools do not
address the real needs of students. People designed so many
visualization tools for visualization and/or animation only
and forgot what these tools are for. As a result, on the
surface, many of these tools have a pretty face without
content. Many designers only consider their wants and
never put themselves into the shoes of the users.” Despite
the negative tone of this response, it does indicate that,
even among experts who understand algorithms, there is
often little agreement about what the visual display should
be. Perhaps designers of visualizations must do a better job
of analysis before plunging into the design and
implementation of visualization tools. In this case, the
question is how to proceed with such an analysis.

Item 1.2 from the pre-conference survey indicated that
the most frequent use of visualizations is for
demonstrations during classroom lectures. The next most
frequent uses were to have the visualization available for
student use outside of a closed lab setting, both with and
without prior guidance or instruction. All three of these
strategies involve learners in relatively passive interactions
with the visualizations. In response to item 1.4 from the
pre-conference survey, 17% of the respondents indicated
that they never ask learners to construct the visualization.
The responses to item 1.4 also reveal that only about half of
the respondents ask their students to respond to written or
oral questions about the visualizations that are used in the
course. We must conclude that, for many computing
educators, even though they use visualizations, the
visualizations are not really woven into the instructional
fabric of the course. If an educator does not expect learners
to be able to converse and answer questions about activities
they carry out as part of the learning process, why require
the activity? One respondent emphasizes the value of
having learners do exercises directly related to the
visualizations by pointing out that the exercises are more
important than the visualizations themselves. This
respondent states “We know that algorithm simulation
exercises promote learning. However, it is not clear
whether this benefit comes from compulsory exercises and
automatic assessment of the submitted solutions, or from
the visual form used when constructing the solutions.” If
this is indeed the case, then the logical conclusion is that
educators who are engaged in visualization need to devote
more time to the accompanying instructional materials,
rather than having a single-minded focus on the graphics of
visualization.

An interesting issue is whether there are any
advantages to having learners actively engage in some form
of viewing expert-constructed visualizations over having
learners construct their own visualizations as part of
programming or other exercises. One respondent is very
convinced that the latter is of greater value. This respondent
observed: “I have also assigned students to prepare
animations using some home grown software The
students implement standard graph algorithms and can see
their code animated. ... It seems to be a much more
engaging activity than working through animations
exercises that I have packaged together.” A related issue is
the amount of time that students spend working with the
material when visualization is involved. One respondent
observed that students spend much more time when

visualization is involved. If learners are spending more
time, does this mean they are learning more material,
getting a deeper understanding of concepts, or simply being
distracted by the features of the visualization?

An underlying and important question when
considering the use of visualization is whether some kinds
of learners are better served by visualization. One
respondent pondered that the computing curriculum is
attracting more and more right-brain learners, in spite of
being a left-brain curriculum. It makes sense to consider
learning characteristics in studies designed to determine the
effectiveness of visualization, since this may reveal
information that will assist researchers in customizing tools
to better serve different learning styles.

Item 1.10 addressed the issue of what makes educators
reluctant to use visualization. We offered fourteen possible
reasons an instructor might feel reluctant to use
visualization. The option that was cited as a major
impediment by two-thirds of the respondents was the time
it takes to develop visualizations. Four other options were
listed as major impediments by 45%-48% of the
respondents. These were the time required to search for
good examples, the time it takes to learn the new tools, the
time it takes to adapt visualizations to teaching approach
and/or course content, and the lack of effective
development tools. It is telling that four of these five
factors are related to the precious commodity of time. This
hints that the most effective way to enable more instructors
to use visualization will be to make it less time-consuming
and more convenient to do so. Although we feel that this
conclusion is a key result that can be gleaned from our
survey, it is not a topic that our report will address in depth.

The responses to item 1.12, which asked respondents
about the techniques they have used for evaluating the
effectiveness of visualization efforts, showed that, with few
exceptions, evaluation was based largely on informal
feedback or brief pencil-and-paper questionnaires. Thus,
the evidence these respondents have collected is primarily
anecdotal. One respondent observed “One of the areas I
would like to see your group address is how to measure
student engagement and student learning for programming
exercises involving visualization that take place outside of
class over a period of a week or two. I believe that students
find these very engaging, but I have no notion of how to
collect data to illustrate this.”

In the next section, we look at experimental results
from prior studies of visualization effectiveness. These
studies shed some light on what has been done in this area
in the past, as well as providing an impetus for the work we
propose in Sections 3, 4, and 5 of our report.

2.3 Review of Experimental Studies of
Visualization Effectiveness

In [28], Hundhausen reports a meta-analysis of twenty-one
experiential evaluations. The striking result from this meta-
analysis is that the studies cast doubt on the pedagogical
benefits of visualization technology. Indeed only 13 of
those experiments ([11, §2 and 3]; [13]; [23, I, II, IV, V,
VII, VIII]; [31]; [40, Chapters 6, 7, 9]) showed that some
aspect of visualization technology or its pedagogical
application significantly impacted learning outcomes.

www.manaraa.com

 142

Further analysis of these experiments suggests that they
fall into two broad categories based on the factors they
identify as critical to the experimental evaluation of
visualization. The first category is represented by the work
of Gurka [20], Hansen et al. [23, VI-VIII], Lawrence ([40],
Chapters 4, 5, 7, 8), and Stasko, Badre, and Lewis [56].
These studies varied representational characteristics of the
learning materials, including:

1. text versus animation,
2. text-first or animation-first, and
3. various graphical attributes of animations.

By contrast, a second group of studies ([11, §2 and 3],
[13], [23, I - V], [30], [31], and [40, Chapters 6 and 9])
varied the level of learner involvement. In addition to
having learners passively view an animation, these studies
involved learners more actively by having them do one or
more of the following:

1. construct their own data sets,
2. answer strategically-chosen questions about the
algorithm,
3. make predictions regarding future algorithm
behavior, or
4. program the algorithm.

Figure 1 summarizes these experiments, contrasting
those with the more passive representational focus with
those that had a more active focus on learner engagement.
As shown, ten out of twelve (83%) experiments using
learner engagement produced a significant result. Out of
nine experiments that manipulated representations, only
three (33%) showed a significant result. This suggests that
what learners do, not what they see, may have the greatest
impact on learning – an observation that is consistent with
constructivist learning theory (see, for example, [47]).

For the full meta-analysis of the twenty-one
experiments see [28]. This expanded analysis includes an
assessment of the extent to which the experiments support
alternative learning theories.

Figure 1: Results of visualization effectiveness experiments

broadly classified by their independent variables

Given the trend that active engagement with
visualizations is far more important to learners than the
graphics that they see, and given the fact that these
previous studies do not consider the impact of visualization
technology on instructors’ time and effort, it makes sense to
design a new series of experiments that systematically
explore the educational impact of alternative forms of
active engagement with visualization technology. In the
next section, we begin this design by classifying forms of
learner engagement.

3. Engagement Taxonomy
In order to better communicate learners’ involvement in an
education situation that includes visualization, we broadly

define six different forms of learner engagement with
visualization technology. Since it is certainly possible to
learn an algorithm without the use of visualization
technology, the first category is “No viewing,” which
indicates that no visualization technology is used at all.

1. No viewing
2. Viewing
3. Responding
4. Changing
5. Constructing
6. Presenting

While this taxonomy does in some sense reflect
increasing levels of learner engagement, we do not consider
this to be an ordinal scale. The relationships among these
six forms of engagement do not form a simple hierarchical
relationship. Figure 2 illustrates, in the form of a Venn
Diagram, the overlapping possibilities among the last five
of these engagement categories, with “Viewing” forming
the universe on which all of the last four forms of
engagement must occur. The first category in our list, “No
viewing,” does not appear in the Venn diagram.

Figure 2: Possible Overlaps in the Engagement Taxonomy.

Basic regions are 2 (Viewing), 3 (Responding), 4
(Changing), 5 (Constructing), 6 (Presenting)

3.1 Viewing
“Viewing” can be considered the core form of engagement,
since all other forms of engagement with visualization
technology fundamentally entail some kind of viewing. The
Venn diagram of Figure 2 indicates this by providing
“Viewing” as the universe in which all other forms of
engagement exist. Viewing is also probably the form of
engagement where the largest number of variations can be
found. For example, a learner can view an animation
passively, but can also exercise control over the direction
and pace of the animation, use different windows (each
presenting a different view), or use accompanying textual
or aural explanations.

Viewing by itself is the most passive of the forms of
engagement; indeed, aside from controlling a
visualization’s execution and changing views, viewing does
not entail active involvement with a visualization. Note
that, in its broadest sense [49, 50], visualization includes
auralization; thus, we include “hearing” within this
category.

The remaining four categories all include viewing.
They do not, however, create a strict hierarchy, even
though they can be done in concert with each other (see
intersections in Figure 2).

www.manaraa.com

 143

3.2 Responding
Category 3 in the engagement taxonomy is “Responding”.
The key activity in this category is answering questions
concerning the visualization presented by the system. For
example, learners might be asked such questions as

• “What will the next frame in this visualization
look like? ” (prediction)
• “What source code does this visualization
represent? ” (coding)
• “What is the best- and worst-case efficiency of
the algorithm represented by this visualization? ”
(efficiency analysis)
• “Is the algorithm represented by this visualization
free of bugs? ” (debugging)

In the responding form of engagement, the learner uses
the visualization as a resource for answering questions. As
such, the engagement involves only limited interaction with
the visualization. However, responding to a question may
involve activities that ultimately culminate in further
viewing activities. For example, in a debugging activity, a
valid response to the question, “Is there a bug in this
program? ” may be to alter source code and regenerate the
visualization.

3.3 Changing
Category 4 in the engagement taxonomy, “Changing,”
entails modifying the visualization. The most common
example of such modification is allowing the learner to
change the input of the algorithm under study in order to
explore the algorithm’s behavior in different cases (for
example, [40, Chapter 9]). Asking the learner questions, as
in the previous category, can further enhance this form of
engagement. For example, the system of Korhonen, Sutinen
and Tarhio [39], based on the Matrix framework [38],
prompts learners to provide input data sets that cover all
possible execution paths.

3.4 Constructing
Category 5 in the engagement taxonomy is “Constructing”.
In this form of engagement, learners construct their own
visualizations of the algorithms under study. Hundhausen
and Douglas [27] have identified two main ways in which
learners may construct visualizations: direct generation and
hand construction.

• In direct generation, the most common
construction technique, learners map a program or
an algorithm to a visualization. This is done
automatically for program visualizations that
visualize the code or state of the data structure.
Algorithm animation is a more abstract view that is
usually achieved by annotating algorithm source
code of algorithms under study with animation
commands, so that animations are generated as a
byproduct of algorithm execution [48, 55]. An
intermediate technique is producing automatically
program visualizations that let the user exert some
control over the contents of the final animation, so
that they can be tailored to a specific educational
goal [42]. Alternatively, learners might be given a
predefined visual representation, which they
manipulate so as to simulate the algorithm [15, 38].

In this case, learners’ simulations may be
automatically checked against the actual execution
of the algorithm.
• Using hand construction, learners might use a
drawing or animation editor (for example, [12]) or
even simple art supplies (pen, paper, scissors, etc.)
[25], to hand-construct their own visualizations.
Lacking a formal execution model of the algorithm,
this technique casts learners in the role of a virtual
machine that executes the visualization of the
algorithm. However, in some construction-type
editors such as JFLAP [29], the model created can
then be executed.

It is important to note that the “Constructing” form of
engagement does not necessarily entail coding the
algorithm. Indeed, while learners may need to implement
the algorithm to be visualized if they are using direct
generation, the implementation of the algorithm could
certainly be supplied to them in advance. In the case of
hand construction, there is no notion of an underlying
“driver” algorithm’s implementation; hence, there is no
need to code.

3.5 Presenting
Level 6 in the engagement taxonomy, “Presenting”, entails
presenting a visualization to an audience for feedback and
discussion. The visualizations to be presented may or may
not have been created by the learners themselves. For
example, Hundhausen [25] describes an undergraduate
algorithms course in which learners were required to
present visualizations of their own creation. Another
possibility is a presentation exercise in which learners are
required to present to their instructor and peers a
visualization they found through a web search.

These six categories of engagement provide a basis for
the metrics we will propose in the next section.

4. Metrics for Determining Effectiveness of
Visualization
In this section, we develop a basis for defining metrics for
determining the effectiveness of visualization. We begin by
discussing how Bloom’s taxonomy can be used to give a
concrete definition of expectations for a learner’s
understanding. Next, we provide a specific example of
applying Bloom’s taxonomy in the context of algorithmics
and data structures. With the examples providing context,
we then explore factors that could be measured in order to
demonstrate learning improvement. Finally, we explore
additional factors that can be collected to help profile the
learners and provide a better context for data analysis.

4.1 Learner Understanding and Bloom’s
Taxonomy
In order to design studies to investigate the effectiveness of
various strategies for engaging learners in visualization, we
must first break down exactly what we expect of learners
studying a particular topic, a very difficult undertaking.
Rather than attempting to provide an all-encompassing
breakdown for all of computer science, we use a general
taxonomy developed by Bloom in 1956 [5]. It then
becomes incumbent upon any particular study of

www.manaraa.com

 144

visualization effectiveness to define understanding within
the particular area of CS in which that study is being
conducted.

Bloom’s taxonomy structures a learner’s depth of
understanding along a linear progression of six increasingly
sophisticated levels:

Level 1: The knowledge level. It is
characterized by mere factual recall with no real
understanding of the deeper meaning behind these
facts.
Level 2: The comprehension level. At
this level, the learner is able to discern the meaning
behind the facts.
Level 3: The application level. Now
the learner can apply the learned material in
specifically described new situations.
Level 4: The analysis level. The
learner can identify the components of a complex
problem and break the problem down into smaller
parts.
Level 5: The synthesis level. The
learner is able to generalize and draw new
conclusions from the facts learned at prior levels.
Level 6: The evaluation level. The
learner is able to compare and discriminate among
different ideas and methods. By assessing the value
of these ideas and methods, the learner is able to
make choices based on reasoned arguments.

4.2 Algorithmics and Data Structures in the
Context of Bloom’s Taxonomy

As an example of how a researcher conducting an
effectiveness study could map a particular area to Bloom’s
breakdown, we develop some sample tasks in the area of
algorithms and data structures. We recognize that creating
such a mapping is not a trivial task and the following
classification may raise objections. Many activities in
algorithmics, for example implementation and analysis,
include tasks of hugely varying complexity. Such tasks
cover a wide range of the levels in Bloom’s taxonomy. In
the remainder of this section, we consider some of the
problematic issues before we present our detailed list of
knowledge levels.

The first issue is the differing complexity of basic
concepts within the field of algorithmics. As in any field,
algorithmics includes a substantial number of terms and
concepts that build the vocabulary of the field but will be
new to the learner. For example, basic terms of graph
theory, like nodes, edges, paths, and cycles are easy to
understand. In contrast, concepts such as the depth-first
search (DFS) algorithm for traversing graphs are much
more difficult. Knowledge about names of data structures
and algorithms belongs to the lowest level in the taxonomy
(knowledge level) whereas being able to explain their
working belongs to the second level (comprehension).

The second problematic issue is that algorithmics
includes knowledge that can be viewed as both conceptual
and related to implementation. It seems reasonable to
assume that to be able to implement an algorithm a learner
must understand its working on a conceptual level.

However, it is unclear whether implementing an algorithm
in a programming language belongs to level 2
(comprehension) or to level 3 (application). If a learner
implements an algorithm that is understood on a conceptual
level, the learner certainly applies conceptual knowledge.
However, implementation is just another, more detailed
form of representing the algorithm. Thus, we propose that a
test item to “write the code for implementing Quicksort”
belongs to level 2 (comprehension) whereas a
programming assignment where the learner must apply a
sorting algorithm to sort an array of records can be
classified as belonging to level 3 (application).

In general, applying algorithms to solve real-world
problems almost always requires some modifications to the
textbook code examples learners have studied. Often
solutions require the combination of various algorithms and
data structures. This requires skills like analyzing the
problem area, identifying objects and their structures,
choosing appropriate representations for the structures, and
deciding which algorithms and structures best apply to
solving the problems. Problem analysis is a task belonging
to level 4 (analysis). Constructing the solution belongs to
level 3 (application) if learners can manage with algorithms
that they know, or to level 5 (synthesis) if learners need to
produce something that is new to them. Of course, the
boundary between different problems can often be subtle,
but assignments that require doing research to discover new
algorithms must belong to at least level 5 (synthesis).
Finally, when learners must evaluate their own solutions
based on some criteria, they are working at level 6
(evaluation), the highest level in Bloom’s taxonomy.

The third issue we must consider is that algorithm
analysis is a complicated undertaking that has parts
belonging to several levels in Bloom’s taxonomy. Knowing
the basic concepts, like big-O notation or worst-case
complexity, belongs to level 1 (knowledge), whereas
following and repeating analysis of some algorithm
requires more understanding (level 2, comprehension).
Carrying out an analysis requires learners to apply their
knowledge of algorithm analysis to a specific problem.
However, the range of difficulty of such analysis problems
is large and hence difficult to pigeon-hole into just one of
Bloom’s levels. We suggest splitting this topic across level
3 (application), level 4 (analysis), and level 5 (synthesis). In
writing an exam, the instructor could ask learners to
analyze a basic algorithm covered in the course or to
produce a simple modified version. When analyzing more
challenging and complex solutions, learners must split the
problem into simpler tasks (a level 4 analysis activity).
Given these simpler tasks, learners can then analyze each
independently. In complicated problems, learners may have
to use and combine several different techniques to develop
a solution, which employs skills needed in doing algorithm
research (level 5, synthesis). Finally, when learners are
charged with critiquing their own analysis methods and
results, they are performing level 6 (evaluation) activities.

www.manaraa.com

 145

Table 4: Sample Tasks for Bloom's Comprehension Levels 1-3

This initial discussion lays the groundwork for our

example of how algorithmic knowledge can be matched to
Bloom’s taxonomy. Tables 4 and 5 illustrate for each level

of Bloom’s taxonomy what learners can be expected to do.
The tables also provide concrete example tasks and
assignments for each level.

Level in Bloom’s
Taxonomy

What Can The Learner Do At This Level Sample Tasks And Assignments

1 - Knowledge Recognize and informally define specific
concepts in algorithmics, like stacks, trees,
graphs, Quicksort, AVL-tree, linear probing, or
basic analysis concepts like Big-O notation and
worst-case complexity.

Define the following concepts: directed graph,
binary tree, array
List three different sorting algorithms

2 - Comprehension • Understand the general principle behind an
algorithm and explain how it works using
words and figures.

• Define concepts formally, that is, recognize
their essential properties and present them
in an exact way.

• Understand the key concepts involved in an
algorithm and their role in the algorithm.

• Implement the algorithm using some
programming language and test that the
implementation works.

• Understand the behavior of the algorithm in
the worst case and in the best case

• Be able to follow and repeat the worst-case
and best-case analysis of the algorithm.

• Explain how the Boyer-Moore algorithm
for string searching works.

• Summarize the key properties of alanced
trees.

• Illustrate how rotations in an AVL tree
maintain the tree's balance.

• Explain the difference between a binary
tree and a binary search tree.

• Formally define a red-black tree.
• Write the pseudocode for inserting items

into a 2-3-4 tree.
• Write a program that sorts an array of

100 integers using shell sort.
• Explain why Quicksort is, in its worst

case, a quadratic time algorithm.
3 - Application • Adapt a previously studied algorithm for

some specific application, environment or
specific representation of data.

• Construct the best-case and worst-case
analysis of basic algorithms.

• Implement a program that sorts a linked
list of strings using insertion sort and
demonstrate that it works.

• Apply the DFS algorithm to check
whether a graph is connected and analyze
the complexity of the algorithm.

• Demonstrate the worst-case form of an
AVL-tree, and calculate its height.

www.manaraa.com

 146

Table 5: Sample Tasks for Bloom's Comprehension Levels 4-6

4.3 Other Factors to be Measured
In the previous section, we presented the levels of

knowledge the learner can achieve. In this section, we
consider more closely those topics that can be measured as
learner improvement, as well as factors that can have a
confounding effect on results.
1. Learner's progress

During a course of study, learners should make
progress so that their knowledge deepens along
Bloom's taxonomy/hierarchy, that is, so they can begin
to work at more advanced levels. However, this
progress is not discrete. On each level, learners can
perform either poorly or well, although the deeper their
knowledge, the better they should perform at the lower
levels. When assessing learners' knowledge, the
hierarchical nature of knowledge must be considered.
Suppose the instructor sets up an assignment that tests
learners' knowledge on some level and grade the
assignment in a traditional way using some grading
scale, for instance a point scale from 0 to 6. Then the
evaluation study could produce results like “We
observed that on an assignment testing level 2
knowledge, learners using method A gained an average
4.6 out of 6 points whereas learners using method B
gained only 3.2 out of 6 points.” A t-test could be used
to determine whether this difference is statistically
significant.

2. Drop-out rate

For some learners, the difficulties they encounter in
their studies cause them to decide to drop a course.
There can be many reasons for such a decision. The
reasons that are most relevant in the context of this
report are the learners' motivation for studying the
topic and their attitude toward different learning
methods and tools used in the course. Measuring drop-
out is not always straightforward, since some learners
may register for the course before they make their final
decision to take it. Thus, the number of learners who
remain in the course long enough to submit at least the
first assignment or exam for evaluation may be a better
indicator of initial participants. Another issue to
consider in measuring drop-out rate is related to the
institutional rules for taking the final exam. Depending
on the rules of a given university, learners may have
one or several options for taking the final exam. Viable
checkpoints for measuring drop-out rate could be
immediately after the first exam or after all exams
have been completed. The definition of drop-out to be
used in a specific instance must be determined as the
experiment is designed.

3. Learning time
Different learners need varying amounts of time to
gain the same level of knowledge. Different learning
methods can also affect the learning time. This can be
important if the instructor wishes to cover more topics
in the course. Thus, instead of setting up assignments
with a set time limit and assessing the learner's

Level in Bloom’s
Taxonomy

What Can The Learner Do At This Level Sample Tasks And Assignments

4 - Analysis • Understands the relation of the algorithm
with other algorithms solving the same or
related problems.

• Understands the invariants in the algorithm
code.

• Be able to reason, argue about and/or prove
the correctness of the algorithm.

• Be able to analyze a complicated problem,
identify essential objects in it and split the
problem into manageable smaller problems.

• Categorize various tree structures.
• Compare the performance of Quicksort

and Heapsort.
• Argue why Dijkstra's algorithm works.
• Explain why Prim's algorithm works for

graphs containing edges with a negative
weight but Dijkstra's algorithm does not.

• Analyze what kind of data structures and
algorithms are needed in building a
search engine.

5 - Synthesis • Design solutions to complex problems
where several different data structures,
algorithms and techniques are needed.

• Analyze the efficiency of complex
combined structures.

• Set up criteria for comparing various
solutions.

• Design a search engine and analyze its
efficiency of space and time.

• Design the data structures and algorithms
needed by a car navigation system

• Create a test environment for assessing
how various search structures perform in
a hierarchical memory.

6 - Evaluation • Argue how and why some algorithm should
be modified or combined with other
algorithms to solve efficiently a new, more
complex problem.

• Discuss the pros and cons of different
algorithms that solve the same or similar
problems.

• Carry out an evaluation of a design or
analysis.

• Define appropriate criteria for assessing
the applicability of search algorithms and
argue why these criteria are important.

• Compare balanced trees and hashing as
methods of implementing a dictionary.

• Discuss the design of a solution, and
argue why it is better or worse than a
different solution.

• Discuss how the analyses presented in the
source text could be refined.

www.manaraa.com

 147

improvement, the instructor could set up assignments
with unlimited time and measure the time required for
students to complete all assignments. If using
visualization motivated learners to spend more time on
task, this could be viewed as a positive result.

4. Learner satisfaction
Learners have different motivations for taking a
course. Additionally, their motivation can change
during the course. It is therefore reasonable to ask for
feedback to inform the educator what the learners think
about the course. These questions may cover attitudes
toward the subject itself, as well as the learners'
opinions of various learning methods and tools applied
during the course.

4.4 Covariant factors
There are additional factors that can affect the results of an
experimental study. These factors describe the nature of the
population under study. Such information is not a direct
focus of the experiment, but can be gathered separately as
background information that can help in analyzing the
measured data.
1. Learning style

Learners exhibit different learning styles. Several
learning style models have been presented in the
context of computing education, for example, the
Felder-Silverman learning model [16, 17] and Kolb's
learning model [36]. These models classify learners in
different categories and dimensions. For example, the
Felder-Silverman model defines four different
dimensions of learning: visual/verbal, active/reflective,
sensing/ intuitive, and sequential/global. Each learner
falls somewhere on the continuum in each dimension,
and their position can considerably affect their learning
when different learning methods and tools are used. In
an evaluation study, learning style can blur the results.
For example, visual learners could perform better
using visualization tools whereas verbal learners could
perform better without them. If both learning types are
equally represented in the population that is being
observed, the overall result may show no improvement
on average.
Learning style can be determined using simple
questionnaires (forexample, the Keirsey instrument
[33]). However, learning style is not completely static,
since properties that are less well developed in a given
learner can be trained.

2. Learner's familiarity with using visualization
technology
If an experiment is conducted on how students learn
one particular topic using visualization technology, the
researcher should consider whether some students
participating in the experiment have also used the
visualization tool to explore other topics. The
researcher would expect that previous familiarity with
the tool would improve students' ability to learn with
it. Hence the effectiveness of visualization in learning
may well be highly dependent on how deeply the
instructor has integrated the use of the visualization
tool into a variety of activities in the course. Indeed,
Ross [52] goes so far as to state that “even very good,
active learning visualization software will be seldom
used if it is a standalone system that is not integrated

as part of the teaching and learning resources of a
class.''

3. Learning orientation
Learners have different goals in their learning.
Niemivirta [46] mentions several different learning
orientations, including those with respect to
achievement, performance-approach, performance-
avoidance, and avoidance. Thus, some learners may
have a goal of learning the topic, while the goal of
others may be to just pass the course, or to achieve
good grades or better grades than their fellow learners.
Some learners, on the other hand, avoid situations that
they feel are hard. All of these attitudes can
considerably affect performance when different
learning methods are being used.
Learning orientation can be tested with simple
questionnaires, but again the researcher must recognize
that this factor need not be static. Learning orientation
could change over the duration of a course if the
learner's motivation for the topic changes considerably.
In general, however, change of learning orientation
occurs much more slowly than this.

4. Other background information
 There are several other factors that can be of interest
in testing learners' improvement. These include
learner's background, gender, age, curriculum, and so
forth.

5. An Experimental Framework
This section describes a large general study on forms of

engagement and their learning outcomes to be carried out
over the next year. The study will involve the members of
the Working Group and any other educators who would like
to join in. In this section, we describe our hypotheses,
propose a general framework for performing experiments,
and provide several examples of experiments that would fit
within our vision.

5.1 General Hypotheses
We make the following hypotheses based on the six

forms of engagement described in Section 3. We have
represented the forms of engagements and their possible
overlaps in the Venn diagram of Figure 2. This diagram
showed that viewing is included in the latter four categories
and these latter four can overlap in many ways. The
hypotheses can be related to the fundamental principles set
forth in constructivist learning theory, which was
mentioned in Section 2.3.

The hypotheses are the following:
I. Viewing vs. No Viewing:

Viewing results in equivalent learning outcomes to no
visualization (and thus no viewing).

Several studies [1, 11, 40]have shown that mere passive
viewing provides no significant improvement over no
visualization, but these studies were based on small sample
populations. Our study may be able to verify this with
larger numbers.

II. Responding vs. Viewing:
Responding results in significantly better learning

outcomes than viewing [7, 11, 15, 24, 30, 44]
III. Changing vs. Responding:

www.manaraa.com

 148

Changing results in significantly better learning
outcomes than responding [1, 18, 35, 45]

IV. Constructing vs. Changing:
Constructing results in significantly better learning

outcomes than changing 1, 24, 51, 55]
V. Presenting vs. Constructing:

Presenting results in significantly better learning
outcomes than constructing

VI. Multiple Engagements:
A mix of several forms of engagement is natural and we

expect this to occur in experiments, especially in the latter
types of engagement. This sixth hypothesis merely states
“More is better.” That is, the higher the level or the more
forms of engagement that occur when using visualization,
the better the learning becomes [1]. Figure 2 provided an
indication of the variety of combinations that could occur in
this regard.

5.2 A General Framework
This general framework is provided as a means of

encouraging a level of consistency across all experiments
conducted as a part of this study. These guidelines assume
that the experimenter has selected a hypothesis for testing,
an algorithm as the focal point, and a visualization tool that
will support the form of engagement. The framework
includes selection of participants, preparation of materials
to use in performance of tasks, a procedure that defines the
organization of the experiment, and a description of the
evaluation instruments for data collection [32].

Participants
Typically, participants will be drawn from a particular

course. An instructor might consider the use of volunteers
outside the classroom setting. On the one hand, a volunteer
group is less desirable as it introduces a factor of self-
selection. On the other hand, learners in a course may view
participation in the study as affecting their grade in the
course. The ethics of studies that involve human subjects is
a matter of concern in most campus communities;
participating researchers must consult the guidelines of the
local Human Subjects Research Board and, if necessary,
seek approval for the study.

Background information about the participants should
be collected for data analysis purposes. (See the evaluation
instruments section below.) The identity of individual
learners may be made anonymous by use of ID-numbers.

Materials and Tasks
The researcher must generate a list of learning

objectives, keyed to Bloom's taxonomy (see Section 4.1),
and prepare the instructional materials that will be used in
the tasks. This comprises the pre-test and post-test,
laboratory materials that include the visualization, and
possible plans for classroom lectures, presentations, and
discussions. The instructional materials and tasks carried
out by the instructor and the learners will vary depending on
the hypothesis being tested. This is necessarily the case due
to the demands of varying levels of engagement.

As an example, suppose the topic area of the
visualization experiment is Quicksort. In section 4.2, we
suggested tasks at level 2 (comprehension) and level 3
(application) in Bloom's taxonomy. If the level of

engagement is Responding, the materials can include the
Quicksort visualization and a worksheet handout. The
learner's task is to view the Quicksort visualization and then
answer questions on the worksheet. Questions on the
worksheet at level 2 (comprehension) of Bloom's taxonomy
would be of the form “Given data set X, which item will be
chosen as the pivot?” or “How many items are in a
particular partition?”

As a second example, consider the Quicksort algorithm
with combined levels of engagement, Constructing and
\Changing. The materials include a tool that supports
learner construction of visualizations. The tasks could be:
“(1) Construct a visualization of the Quicksort algorithm so
the resulting list of items is in ascending order; and (2)
Change the data set for the Quicksort visualization to force
worst case behavior.”

Procedure
The purpose of the procedure is to organize the

experiment. The overall experimental procedure is rather
straightforward: pre-test, use materials to perform tasks,
post-test. This three-step sequence does not cover all
aspects of using the visualization materials and collecting
data. We leave the details of the procedure to the instructor
to plan a best fit for their schedule and their learners.

To construct such an experiment, the best method for
obtaining reliable results is to split the learners into two or
more randomized groups, in which the distribution of the
population under study is similar, according to the chosen
covariants presented in Section 4.4. However, since such
groupings are often not feasible, some other approach may
be used, for example:
• If an institution has two sections of a course, each

section can use one type of engagement and then the
two can be compared.

• At some institutions where learners should have the
same type of learning experience, one method can be
used during the first half of the course in one section
and not in the other section. Then the post-test is
administered in both sections. After the post-test, when
the experimental data has been collected, the section
without the engagement can be given the same
treatment to ensure equal opportunity for learning.

• If the same course is taught in two different semesters,
then one engagement method could be used one
semester and another engagement method could be
used another semester.

Evaluation Instruments
Several instruments are needed in order to carry out the

experiment, including pre- and post-tests, a background
questionnaire, task-specific logs, and learner feedback
forms.

Pre-Test and Post-test: Care must be taken to ensure
that the pre-test and post-test are isomorphic. This is most
easily ensured by using the same questions in a different
order and/or with different, but comparable, data sets. Items
in the pre-test and post-test should be keyed to Bloom's
taxonomy and the learner objectives already defined during
the ``Materials and Tasks'' stage of planning. However,
learners who are aware of such a pre- and post-test may
prepare for the post-test by practicing the questions that
were part of the pre-test, hence tainting the experiment.

www.manaraa.com

 149

Background: Expected items include: gender, year in
school, major, standardized test scores. Other items are at
the discretion of the instructor.

Task-specific: The instructor will manage the collection
of data intended to measure the following:
• Time on task -- categories could include the time

learners spend on task in the classroom, in a closed lab,
in an open lab, and on their own.

• Learner progress -- scores and an item analysis of the
pre-test and post-test. For example, in a Constructing
vs. Changing experiment, three items on a pre-test and
post-test might be keyed to a learner objective at level
3 (application) of Bloom's taxonomy. In order to assess
the learners' ability to apply the material they have
learned to new situations, there can be an item analysis
of the pre- and post-tests. This will give an indication
of the contribution of each level of engagement to
whatever gain (or no gain) occurred.

• Drop-out rate -- this may be more significant in the
lower-level courses.

Learner feedback: A form will be used to collect

information on the covariant factors defined in Section 4.4.
Sample questions include the following.
1. How effective was the visualization in illustrating the

concept?
2. What is the contribution of visualization to your

understanding?
3. In what way has your attitude changed on this topic?

Example Experiments
In this section we suggest examples of possible

experiments and how they could be interpreted with
different forms of engagement.

We describe six topics from different areas of computer
science and how they could be defined using different
forms of engagement. Each example describes the forms of
engagement that would be the independent or treatment
variables of the experiments. The dependent or criterion
variable in each example will be the pre-test and post-test
that will be given to each group.

1. Area: Programming Languages

Topic: Data Types in Functional Programming
Hypothesis I: Viewing vs. No Viewing

 In this example, a tool is needed that allows one to
run a program with functional data structures both in a
textual and in a graphical display. For instance, breadth
traversal involves lists and trees.

No viewing breadth traversal could mean looking at
the states of the algorithm on given data sets, where the
states are given in textual format.

Viewing breadth traversal could mean looking at an
animation of the algorithm on the same data sets, where
the states of the animation are given in graphical
format.

2. Area: CS-1
Topic: Quicksort
Hypothesis II: Responding vs. Viewing

In this example, a tool is needed that allows one to
view the animation of Quicksort.

Viewing could mean looking at an animation of the
algorithm on given data sets. The animation may or
may not have controls associated with it such as
pausing and stepping through the phases. The
animation could be viewed with given data sets that
illustrate the worst case and average case.

Responding could mean viewing Quicksort with
either prediction built into the software or a worksheet
containing questions that learners must answer while
stepping through the animation. Learners must answer
questions such as “Which element will be chosen as the
next pivot? What will the array look like after the call
to find the next pivot? Which section of the array will
be sent in the next call of recursion? Which section of
the array at this point in time is guaranteed to be in
sorted order?”

 Concepts to focus on are the understanding of the
overall algorithm, understanding the recursion part of
the algorithm, and understanding the choice of pivot
and the algorithm for the rearrangement of the data
around the pivot.

3. Area: CS-2
Topic: Tree Traversal
Hypothesis II: Changing vs. Responding

In this example, a tool is needed that allows one to
load a tree and see the animations of the tree traversals
pre-order, in-order and post-order.

Responding could mean watching animations of
tree traversals pre-order, in-order, and post-order on
given trees with either prediction built into the software
or a worksheet that learners must answer during the
stepping-through of the animation. Learners must
answer questions such as “Which node is printed out
next? When will this node be visited? How many times
is this node visited before it is printed?”

Changing could mean changing the underlying
data, which in this case is the tree. Learners can change
the tree and then see what the different results are for
different trees.

4. Area: Automata Theory
Topic: Converting an NFA into a DFA
Hypothesis IV: Constructing vs. Changing

In this example, a tool is needed that allows one to
load or construct a nondeterministic finite automaton
(NFA) and animate the process of converting the NFA
into a deterministic finite automaton (DFA).

Changing could mean changing the underlying
NFA and then following steps to see how the different
NFA's are converted into DFA's.

Constructing could mean starting with an NFA and
then constructing the equivalent DFA using software
that will give helpful error messages if mistakes are
made.

5. Area: Algorithmics and Data Structures
Topic: Shortest Paths
Hypothesis V: Presenting vs. Constructing

In this example, a compiler is needed, along with a
tool for producing an animation, such as a scripting
language.

Constructing could mean writing program code and
the animation for the shortest paths algorithm. Both of
these are time-consuming. The learner is likely given
pseudo-code or general code for the algorithm and must

www.manaraa.com

 150

first adapt it, and then add the components to produce
the animation using a scripting language.

Presenting could mean the learner would present
the shortest path algorithm in detail in front of the class,
possibly using a presentation software.

Note: the Presenting example above for the shortest
paths algorithm is likely to include additional forms of
engagement such as Constructing, Changing, or
Viewing in order to learn the algorithm before
presenting it.

6. Area: Introduction to Programming
Topic: Recursion
Hypothesis VI: Changing vs Viewing

 In this example, a program visualization tool is
needed. A program visualization tool allows the learner
to construct a program and then automatically generates
an animation. For instance, Alice 3D animation tool
(http://www.alice.org) provides a programming
language environment where learners can immediately
see an animation of how their program executes [14]

Viewing could mean watching an animation where
a skater (or some figure) is skating to a cone on the ice,
avoiding collision. The condition of nearness to the
cone is used to control a recursive call to the animation
method (tail recursion).

Constructing and Changing could mean the learner
constructs the animation using recursive calls to glide a
skater to the cone without colliding. Then, the learner is
asked to change the animation to make the skater
respond to a mouse click on different cones, skating to
the selected cone.

6. Conclusion
In this report, we have set the stage for a wide variety

of future studies that will allow computer science educators
to measure the relationship between a learner's form of
engagement with a visualization and the types of
understanding that are affected by that engagement. We
have defined an engagement taxonomy to facilitate a
consistent approach toward defining the form of
engagement used in such studies. We have also described
how Bloom's taxonomy can be used to differentiate among
types of understanding in various areas of computer
science. Based on these taxonomies, we have specified a
framework for conducting experiments that use these two
taxonomies to establish the independent and dependent
variables respectively.

In the coming year, we intend to design several specific
experiments that are based on this methodology. These
experiments will be broad enough to allow collaboration
between researchers at many institutions. We invite
educators who are interested in participating to contact
either of the working group co-chairs at naps@uwosh.edu
or roessling@acm.org.

7. Acknowledgments
We gratefully acknowledge the contributions of the

following colleagues:
• Jay Anderson, Franklin and Marshall, USA
• Scott Grissom, Grand Valley State University,

USA
• Rocky Ross, University of Montana, USA

Jay and Rocky had hoped to be part of the group, but
events kept them from coming to Denmark. They
nonetheless provided substantial input to our deliberations
through electronic communication. Scott's survey at ITiCSE
2000 was a key factor in formulating the group's original
goals.

We also thank all the CS educators who responded to
our pre-conference on-line survey as well as those who took
part in the index card survey during ITiCSE 2002.

8. References

[1] Anderson, J. M., and Naps, T. L. A Context for the
Assessment of Algorithm Visualization System as
Pedagogical Tools. First International Program
Visualization Workshop, Porvoo, Finland. University of
Joensuu Press (July 2001), 121-130.

[2] Baecker, R. Sorting Out Sorting: A Case Study of
Software Visualization for Teaching Computer Science. In
Software Visualization, J. Stasko, J. Domingue, M. H.
Brown, and B. A. Price, Eds. MIT Press, 1998, ch. 24, pp.
369-381.

[3] Bazik, J., Tamassia, R., Reiss, S. P., and van Dam, A.
Software Visualization in Teaching at Brown University. In
Software Visualization, J. Stasko, J. Domingue, M. H.
Brown, and B. A. Price, Eds. MIT Press, 1998, ch. 25, pp.
382-398.

[4] Biermann, H., and Cole, R. Comic Strips for Algorithm
Visualization. Tech. rep., NYU 1999-778, New York
University, Feb. 1999.

[5] Bloom, B. S., and Krathwohl, D. R. Taxonomy of
Educational Objectives; the Classification of Educational
Goals, Handbook I: Cognitive Domain. AddisonWesley,
1956.

[6] Boroni, C. M., Eneboe, T. J., Goosey, F. W., Ross, J. A.,
and Ross, R. J. Dancing with Dynalab, Endearing the
Science of Computing to Students. Twenty-seventh SIGCSE
Technical Symposium on Computer Science Education
(1996), 135-139.

[7] Bridgeman, S., Goodrich, M. T., Kobourov, S. G., and
Tamassia, R. PILOT: An Interactive Tool for Learning and
Grading. 31st ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 2000), Austin,
Texas (Mar. 2000), 139-143.

[8] Brown, M. H. Algorithm Animation. MIT Press,
Cambridge, Massachussets, 1988.

[9] Brown, M. H., and Raisamo, R. JCAT: Collaborative
Active Textbooks Using Java. Computer Networks and
ISDN Systems 29 (1997), 1577-1586.

[10] Brown, M. H., and Sedgewick, R. A System for
Algorithm Animation Structures. ACM SIGGRAPH '84
Proceedings, Minneapolis, Minnesota (July 1984), 177-186.

www.manaraa.com

 151

[11] Byrne, M. D., Catrambone, R., and Stasko, J.
Evaluating Animations as Student Aids in Learning
Computer Algorithms. Computers & Education 33 (1996),
253-278.

[12] Citrin, W., and Gurka, J. A Low-Overhead Technique
for Dynamic Blackboarding Using Morphing Technology.
Computers & Education 26, 4 (1996), 189-196.

[13] Crosby, M. E., and Stelovsky, J. From Multimedia
Instruction to Multimedia Evaluation. Journal of
Educational Multimedia and Hypermedia 4 (1995),
147-162.

[14] Dann, W., Cooper, S., and Pausch, R. Using
Visualization To Teach Novices Recursion. 6th Annual
ACM SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2001),
Canterbury, England (June 2001), 109-112.

[15] Faltin, N. Structure and Constraints in Interactive
Exploratory Algorithm Learning. In Software Visualization
(2002), S. Diehl, Ed., no. 2269 in Lecture Notes in
Computer Science, Springer, pp. 213-226.

[16] Felder, R. M. Reaching the second tier. Journal of
College Science Teaching 23, 5 (1993), 286-290.

[17] Felder, R. M. Matters of style. ASEE Prism 6, 4
(1996), 18-23.

[18] Gloor, P. A. User Interface Issues for Algorithm
Animation. In Software Visualization, J. Stasko, J.
Domingue, M. H. Brown, and B. A. Price, Eds. MIT Press,
1998, ch. 11, pp. 145-152.

[19] Grissom, S. Personal communication, 2002.

[20] Gurka, J. S. Pedagogic Aspects of Algorithm
Animation. PhD thesis, Department of Computer Science,
University of Colorado, 1996.

[21] Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J.,
Teräsvirta, T., and Vanninen, P. Animation of User
Algorithms on the Web. IEEE Symposium on Visual
Languages (1997), 360-367.

[22] Hansen, S., Schrimpsher, D., and Narayanan, N. H.,
From Algorithm Animations to Animation-Embedded
Hypermedia Visualizations. Proceedings of World
Conference on Educational Multimedia, Hypermedia and
Telecommunications (ED-MEDIA 1999), Seattle,
Washington (1999), 1032-1037.

[23] Hansen, S. R., Narayanan, N. H., and Schrimpsher, D.
Helping Learners Visualize and Comprehend Algorithms.
Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning 2, 1 (2000).

[24] Hundhausen, C. D. Toward Effective Algorithm
Visualization Artifacts: Designing for Participation and
Communication in an Undergraduate Algorithms Course.
PhD thesis, University of Oregon, 1999. Unpublished
Doctoral Dissertation, available as technical report CIS-TR-

99-07 (June 1999) in Department of Computer and
Information Science, University of Oregon, Eugene.

[25] Hundhausen, C. D. Integrating Algorithm
Visualization Technology into an Undergraduate
Algorithms Course: Ethnographic Studies of a Social
Constructivist Approach. Computers & Education (2002),
(in print).

[26] Hundhausen, C. D., and Douglas, S. Using
Visualizations to Learn Algorithms: Should Students
Construct Their Own, or View an Expert's? IEEE
Symposium on Visual Languages, Los Alamitos, California
(2000), 21-28.

[27] Hundhausen, C. D., and Douglas, S. A. Low-Fidelity
Algorithm Visualization. Journal of Visual Languages and
Computing (2002), (in print).

[28] Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. A
Meta-Study of Algorithm Visualization Effectiveness.
Journal of Visual Languages and Computing (2002), (in
print).

[29] Hung, T., and Rodger, S. H. Increasing Visualization
and Interaction in the Automata Theory Course. 31st ACM
SIGCSE Technical Symposium on Computer Science
Education (SIGCSE 2000), Austin, Texas (Mar. 2000),
6-10.

[30] Jarc, D., Feldman, M. B., and Heller, R. S. Assessing
the Benefits of Interactive Prediction Using Web-based
Algorithm Animation Courseware. 31st ACM SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE 2000), Austin, Texas (Mar. 2000), 377-381.

[31] Kann, C., Lindeman, R. W., and Heller, R. Integrating
Algorithm Animation into a Learning Environment.
Computers & Education 28 (1997), 223-228.

[32] Katz, B., and Almstrum, V. Collaborative Project
Plans, version 1.3. WWW:
http://www.cs.utexas.edu/users/csed/CPP/, Nov. 3, 1998.

[33] Keirsey, D. M. Keirsey Temperament and Character
Web Site. WWW: http://www.keirsey.com, 2002.

[34] Khuri, S. Designing Effective Algorithm
Visualizations. First International Program Visualization
Workshop, Porvoo, Finland. University of Joensuu Press
(Feb. 2001), 1-12.

[35] Khuri, S. A User-Centered Approach for Designing
Algorithm Visualizations. Informatik / Informatique,
Special Issue on Visualization of Software (Apr. 2001),
12-16.

[36] Kolb, D. Experiential Learning. Prentice-Hall, New
Jersey, 1984.

[37] Korhonen, A., and Malmi, L. Algorithm Simulation
with Automatic Assessment. 5th Annual ACM
SIGCSE/SIGCUE Conference on Innovation and

www.manaraa.com

 152

Technology in Computer Science Education (ITiCSE 2000),
Helsinki, Finland (July 2000), 160-163.

[38] Korhonen, A., and Malmi, L. Matrix - Concept
Animation and Algorithm Simulation System. Proceedings
of the Working Conference on Advanced Visual Interface
(AVI 2002), Trento, Italy (May 2002), 256-262.

[39] Korhonen, A., Sutinen, E., and Tarhio, J.
Understanding Algorithms by Means of Visualized Path
Testing. In Software Visualization (2002), S. Diehl, Ed., no.
2269 in Lecture Notes in Computer Science, Springer, pp.
256-268.

[40] Lawrence, A. W. Empirical Studies of the Value of
Algorithm Animation in Algorithm Understanding. PhD
thesis, Department of Computer Science, Georgia Institute
of Technology, 1993.

[41] Mayer, E., and Anderson, R. B. Animations need
narrations: An experimental test of a dual-coding
hypothesis. Journal of Educational Psychology 83 (1991),
484-490.

[42] Naharro-Berrocal, F., Pareja-Flores, C., Urquiza-
Fuentes, J., Velázquez-Iturbide, J. A., and Gortázar-Bellas,
F. Redesigning the Animation Capabilities of a Functional
Programming Environment under an Educational
Framework. Second International Program Visualization
Workshop, Ärhus, Denmark (June 2002), (in print).

[43] Naharro-Berrocal, F., Pareja-Flores, C., and
Velázquez-Iturbide, J. A. Automatic Generation of
Algorithm Animations in a Programming Environment.
30th ASEE/IEEE Frontiers in Education Conference,
Kansas City, Missouri (Oct. 2000), S2C 6-12.

[44] Naps, T., Eagan, J., and Norton, L. JHAVÉ: An
Environment to Actively Engage Students in Web-based
Algorithm Visualizations. 31st ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE
2000), Austin, Texas (Mar. 2000), 109-113.

[45] Naps, T. L. Incorporating Algorithm Visualization into
Educational Theory: A Challenge for the Future. Informatik
/ Informatique, Special Issue on Visualization of Software
(Apr. 2001), 17-21.

[46] Niemivirta, M. Motivation and performance in context
- the influence of goal orientation and instructional setting
on situational appraisals and task performance.
International Journal of Psychology in the Orient (2002),
(in print).

[47] Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

[48] Pierson, W., and Rodger, S. H. Web-based Animation
of Data Structures Using JAWAA. 29th ACM SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE '98), Atlanta, Georgia (1998), 267-271.

[49] Price, B., Baecker, R., and Small, I. An Introduction to
Software Visualization. In Software Visualization, J.

Stasko, J. Domingue, M. H. Brown, and B. A. Price, Eds.
MIT Press, 1998, ch. 1, pp. 3-27.

[50] Price, B. A., Baecker, R. M., and Small, I. S. A
Principled Taxonomy of Software Visualization. Journal of
Visual Languages and Computing 4, 3 (1993), 211-264.

[51] Rodger, S. Integrating Animations into Courses. 1st
Annual ACM SIGCSE/SIGCUE Conference on Integrating
Technology into Computer Science Education (ITiCSE '96),
Barcelona, Spain (June 1996), 72-74.

[52] Ross, R. J. Personal communication, 2002.

[53] Rößling, G., and Freisleben, B. ANIMAL: A System
for Supporting Multiple Roles in Algorithm Animation.
Journal of Visual Languages and Computing 13, 2 (2002),
(in print).

[54] Stasko, J. TANGO: A Framework and System for
Algorithm Animation. IEEE Computer 23 (1990), 27-39.

[55] Stasko, J. Using Student-built Algorithm Animations
as Learning Aids. 28th ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE '97), San Jose,
California (Feb. 1997), 25-29.

[56] Stasko, J., Badre, A., and Lewis, C. Do Algorithm
Animations Assist Learning? An Empirical Study and
Analysis. Proceedings of ACM INTERCHI 1993
Conference on Human Factors in Computing Systems
(1993), 61-66.

[57] Stern, L., Søndergaard, H., and Naish, L. A Strategy
for Managing Content Complexity in Algorithm Animation.
4th Annual ACM SIGCSE/SIGCUE Conference on
Innovation and Technology in Computer Science Education
(ITiCSE'99), Cracow, Poland (Sept. 1999), 127-130.

