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Abstract 

Visualization technology can be used to graphically 
illustrate various concepts in computer science. We argue 
that such technology, no matter how well it is designed, is 
of little educational value unless it engages learners in an 
active learning activity. Drawing on a review of 
experimental studies of visualization effectiveness, we 
motivate this position against the backdrop of current 
attitudes and best practices with respect to visualization 
use. We suggest a new taxonomy of learner engagement 
with visualization technology. Grounded in Bloom’s well-
recognized taxonomy of understanding, we suggest metrics 
for assessing the learning outcomes to which such 
engagement may lead. Based on these taxonomies of 
engagement and effectiveness metrics, we present a 
framework for experimental studies of visualization 
effectiveness. Interested computer science educators are 
invited to collaborate with us by carrying out studies within 
this framework. 
 

1. Introduction 
 
This report is the culmination of efforts by the Working 
Group on Improving the Educational Impact of Algorithm 
Visualization. The group, which was convened by Tom 
Naps and Guido Rößling, began work during spring 2002. 
Using a groupware tool and a listserv mailing list, the 
group discussed a number of issues, prepared and 
conducted an on-line survey, and developed a rough draft 
of the report before meeting in person during the ITiCSE 
conference in Århus, Denmark. Throughout the remainder 
of this report, “we” refers to the Working Group, which 
was composed of the individuals listed at the beginning of 

the report. We also had three remote members, who are 
acknowledged in a section at the end of this report. 

The impetus for visualization in computing comes from 
the inherent abstractness of the basic building blocks of the 
field. Intuition suggests that, by making these building 
blocks more concrete, graphical representations would help 
one to better understand how they work. Visualization 
software emerged in the late 1980’s for the purpose of 
creating and interactively exploring graphical 
representations of computer science concepts [8, 54]. Our 
recent surveys of computer science educators suggest a 
widespread belief that visualization technology positively 
impacts learning. However, experimental studies designed 
to substantiate the educational effectiveness of such 
visualization technology simply do not bear this out [28]. 
On top of this, a major deterrent to adopting visualization 
that emerged from our pre-conference survey is the time 
and effort required for instructors to integrate the 
technology into their curricula. These findings point to two 
key obstacles to visualization technology’s widespread 
adoption:  

• From the learner’s perspective, the visualization 
technology may not be educationally beneficial. 
• From the instructor’s perspective, the 
visualization technology may simply incur too much 
overhead to make it worthwhile.  

Given the belief of computer science educators that 
visualization technology, under the right conditions, can 
greatly benefit learners and instructors alike, what can be 
done to overcome these obstacles? With respect to 
educational effectiveness, it makes sense to look more 
closely at past experimental studies of effectiveness. 
Indeed, closer inspection reveals an important trend in 
those studies: that learners who are actively engaged with 
the visualization technology have consistently 
outperformed learners who passively view visualizations 
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[28]. For example, visualization technology has been 
successfully used to actively engage learners in such 
activities as:  

• Constructing their own input data sets [40, 
Chapter 9],  
• Making predictions regarding future visualization 
states [11],  
• Programming the target algorithm [31],  
• Answering strategic questions about the 
visualization [23,44],  
• Constructing their own visualizations [26].  

Given this trend, it makes sense to design further 
experimental studies that more closely examine the 
educational benefits of various forms of active engagement. 
In this report, we present a framework for this type of 
empirical study. The framework is flexible enough to allow 
such studies to take place both in controlled situations and 
in classrooms. Our thesis is that visualization technology, 
no matter how well it is designed, is of little educational 
value unless it engages learners in an active learning 
activity. If this is true, then the key question to consider is 
what, if any, forms of active engagement with visualization 
technology can have a positive impact on how much a 
learner learns. 

The second major obstacle to visualization technology 
identified in our survey, instructor overhead, is not directly 
addressed in this report. However, if experimental results 
show that some forms of active engagement with 
visualization lead to very positive educational outcomes, 
we are hopeful that a variety of educators will begin the 
development of instructional materials that take advantage 
of those forms of engagement. 

Drawing on a review of experimental studies of 
visualization effectiveness and well-known best practices 
for algorithm visualization, Section 2 motivates our thesis 
against the backdrop of current attitudes and best practices 
with respect to algorithm visualization use. Section 3 
presents a taxonomy of learner engagement with 
visualization technology, while Section 4 identifies metrics 
for assessing the learning outcomes to which such 
engagement may lead. Based on our taxonomy of 
engagement and the effectiveness metrics we propose, we 
present a framework for empirical studies of algorithm 
visualization effectiveness in Section 5. Section 6 
concludes by discussing the future of this framework: 
studies we are planning, and opportunities for interested 
computer science educators to collaborate with us. 

2. Background 
Interactive visualization has been employed in 

computer science education since the 1980s (see, for 
example, [8,10]). During that time, a set of “best practices” 
has evolved through instructors’ experiences with the 
technology. We summarize the most important of these in 
Section 2.1. To determine current practice and instructors’ 
attitudes toward the efficacy and impact of these practices, 
we recently conducted a survey of computing educators; we 
summarize the key results in Section  
2.22.2. In Section 2.3, we summarize the widely mixed 
results of past experimental studies of visualization 
effectiveness and motivate the need for a new set of 
experiments. 

2.1 Overview of Best Practices 
Pedagogical visualization draws on many related 
disciplines, including typography, psychology, and 
algorithms. This makes it difficult to summarize the lessons 
learned, although some general recommendations about 
typography and layout apply. Khuri [35] summarizes 
recommendations on display layout, use of color and 
sound, and interactivity issues. While there is no agreed-
upon standard for the “commandments of algorithm 
animation” [18], the following eleven points are commonly 
accepted suggestions drawn from experience:  

1. Provide resources that help learners interpret the 
graphical representation. As concrete 
representations, visualizations may assist learners in 
understanding algorithms. However, visualizations 
may also be difficult to interpret; learners may find 
it difficult to map a visualization to the underlying 
algorithm it is designed to represent. The meaning 
of the graphical representations and their relation to 
program elements can be clarified for learners in 
one of two ways: explain the relationship by 
embedding the representations in the system using 
text or narration, or reinforce the relationship by 
allocating instructional time to the topic during the 
course. 
2. Adapt to the knowledge level of the user. Novice 
learners can become quickly overwhelmed by too 
many details or windows, and they usually prefer to 
test an animation with predefined input data. In 
contrast, advanced learners may benefit from 
additional facilities for controlling complexity and 
for navigation, or from the capability to invent input 
data to more fully exercise algorithms. In addition, 
novices may more easily understand the structure of 
animations that are based on well-known metaphors, 
for example, comic strips [4], theater performances 
[21], electronic books [9] or slide presentations [43]. 
In contrast, advanced learners may benefit from 
facilities for large data sets and multiple views, such 
as those provided by systems like BALSA [8]. 
3. Provide multiple views. An algorithm can be 
watched in many different ways, for example, 
control flow in source code or state of data 
structures. Providing the learner with multiple views 
can facilitate a better understanding of the 
algorithm. Windows displaying different views 
should be coordinated to show consistent 
information. In particular, it is very useful to 
provide a program animation view (where code is 
shown and highlighted as the program executes) 
simultaneously with more abstract algorithm 
animation views. In this way, the learner can relate 
algorithm actions to program code. An alternative 
approach is providing pseudo-code instead of raw 
code [57]. If pseudo-code nodes are enhanced with 
expand/contract facilities (i.e. simulating stepwise 
refinement), animations should be coordinated 
accordingly to ensure an adequate level of 
granularity. Finally, it can be advantageous from an 
educational point of view to offer different views 
sequentially. For instance, the HalVis system 
[22,23] was designed to show animation in three 
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steps: a familiar metaphor that could help learners 
understand the problem, a detailed animation with 
synchronous multiple views and explanations, and a 
large example of an application. 
4. Include performance information. Efficiency 
analysis is an important part of algorithmic 
understanding. Thus, including data collected about 
the algorithm execution can enhance understanding 
of the algorithm’s efficiency. Another way of 
reinforcing performance information is by animating 
several algorithms simultaneously, as in the Sorting 
Out Sorting videotape [2]. Different rates for 
solving the same problem are visually deduced by 
the user. 
5. Include execution history. After several steps in 
the algorithm animation, it is common for the 
learner to forget previous steps, to have 
misunderstood some previous step in the algorithm, 
or simply to want to have a global view of the 
history. Making historical information available to 
the learner can help overcome these problems. 
History can be explicitly provided or can be 
implicitly integrated into some of the algorithm 
views. In JFLAP [29] when stepping through a 
nondeterministic example, one can select any 
configuration and see the history of the path from 
the start state to the chosen configuration. 
6. Support flexible execution control. Flexible 
control of the visualization should be possible, 
including the ability to execute the visualization 
both forwards and backwards (see, for example, [6, 
53, 56]). A simple but effective user interface for 
visualization control mirrors a video player, with 
buttons for the following functions: stop, pause, one 
step forward, continuous advance, advance to the 
end, one step backwards and backtrack to the 
beginning [43]. 
7. Support learner-built visualizations. Stasko [55] 
advocates that learners build their own 
visualizations. Such construction enables learners to 
gain insights into what is important about an 
algorithm under study. At the same time, it creates 
for learners a greater sense of responsibility through 
the construction of their own artifacts [24]. 
8. Support custom input data sets. Allowing 
learners to specify their own input data sets (for 
example, [8, 38]) engages them more actively in the 
visualization process. It allows the learner to explore 
the animation freely in order to discover how the 
algorithm executes on a range of data. 
9. Support dynamic questions. To encourage 
learners to reflect on a visualization, visualization 
systems can use a “pop quiz” approach by 
periodically presenting short questions requiring a 
response from the learner [22, 44]. It is often useful 
to provide two kinds of questions. Some questions 
can pop up in random order, but in an appropriate 
context. Such questions focus the learner’s attention 
on specific issues and promote self-evaluation as a 
means of improving comprehension. Other 
questions may be placed at critical points beyond 

which learners cannot proceed until they correctly 
answer the questions. 
10. Support dynamic feedback. Learners 
should be provided with dynamic feedback on their 
activities within a visualization system. For 
example, Korhonen and Malmi [37] describe a 
visualization system that presents learners with 
graphical representations of algorithms and requires 
the learners to manipulate these representations in 
order to simulate the algorithm. The system then 
provides learners with automatic, dynamic feedback 
about the correctness of such simulations. 
11. Complement visualizations with 
explanations. Educational research rooted in dual-
coding theory suggests that visualizations may be 
better understood if they are accompanied by 
explanations [41]. Such integration can be made in a 
number of different ways, such as writing an 
accompanying explanation in a coordinated 
graphical window or providing a coordinated audio 
track for the visualization. A more traditional 
approach to explanations, based on paper books, is 
also possible. In particular, Bazik et al. [3] 
emphasize the need for animations to be tightly 
integrated with textbooks if such animations are to 
be integrated naturally into a course. 

In considering the above recommendations, an 
educator must weigh carefully how to adapt and apply 
them, since there is no single visualization system or 
activity that is best for all learners. In fact, the design of an 
animation system and its animations should be as carefully 
planned as any other design activity (see for example, 
[34]). 

2.2 Survey of Current Practice 
In this section, we describe the process and results from 
three surveys, two of which were designed and carried out 
by our Working Group. We first describe the design and 
content of all three surveys. Next, we profile the 
respondents and describe their teaching contexts. We go on 
to explore the responses related to visualization and its use 
in teaching. We conclude by discussing our impressions 
from the survey results and implications for further work. 

2.2.1 Description of the surveys 
As the Working Group began to collaborate a few weeks 
before the ITiCSE 2002 conference in Århus, we 
considered a number of resources. One item that was 
circulated was a summary of a pencil-and-paper survey 
conducted by Scott Grissom during the ITiCSE 2000 
conference in Helsinki, Finland [19]. The results from 
Grissom’s survey motivated us to develop a new, more 
detailed on-line survey that we conducted prior to the 
conference. Using the items from Grissom’s survey as a 
starting point, we successively refined the items to provide 
a basis that would guide the working group in carrying out 
its agenda. 

The working group’s on-line survey was designed 
using the tool SurveySuite (http://intercom 
.virginia.edu/SurveySuite), which allows a researcher to 
compose surveys from a pre-defined menu of item types. 
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To complete the survey, a respondent receives a direct 
URL, fills in the form with their responses to the various 
items, and clicks a button to submit their responses. Once 
submitted, responses are accumulated in an underlying 
database, from which the researcher can obtain profiles of 
the responses-to-date and download for local analysis 
spreadsheets containing the responses. 

The final pre-conference survey contained four 
sections. The first section polled respondents for their 
experiences with visualizations. We included items 
designed to gauge both the attitude toward and experience 
with various types of visualization. Some items were 
designed to detect the use of mediated transfer (that is, how 
instructors help learners relate their visual experience to the 
concepts being taught in the course). The second section of 
the pre-conference survey was designed to provide a profile 
of each respondent’s teaching situation. Items addressed the 
availability and physical set-up of equipment, the type and 
size of classes, the number of learners and faculty members 
at the institution, and how extensively various types of 
visualization are used. The third section of the pre-
conference survey sought information about the individual 
respondents, including how long they have taught, location 
of their institutions, and sources they use for information 
about visualization. We also requested contact information 
as well as information about how the respondents learned 
about the pre-conference survey. The final section, Closing 
Thoughts, provided respondents with an opportunity to 
share any other thoughts or information. 

By the time we arrived in Århus for the ITiCSE 2002 
conference, we had collected 29 responses. As we 
discussed the results (which are presented shortly), we 
decided that it would be useful to conduct a quick and very 
informal index card survey of conference attendees. Our 
index card survey had only two items: 1) Using 
visualizations can help learners learn computing science [5-
point scale: Strongly agree; Agree; Neutral/No opinion; 
Disagree; Strongly disagree], and 2) How often do you use 
algorithm visualizations in your teaching? [4-point scale: 
Extensively (every week); Frequently (every other week); 
Occasionally (once or twice per term); Never]. To conduct 
the survey, we distributed index cards at the beginning of 
the conference session during which each Working Group 
was to present information about the group’s work. We 
requested that audience members should quickly answer 
the two items on the front of their index cards; we also 
invited respondents to add any comments or questions on 
the back of the index card. We collected the completed 
index cards before we presented results from our pre-
conference survey. 

2.2.2 Background of respondents and their 
institutions  

In this section, we summarize the results from three 
surveys: Grissom’s survey from ITiCSE 2000, our pre-
conference on-line survey, and our ITiCSE 2002 index card 
survey. Table 1 summarizes the number of  

Table 1: Summary information for the three surveys 
respondents and gives some background information about 
the respondents and their institutions. Full results of the 
pre-conference survey, including the full set of items, are 
available on the working group’s web site at 

http://www.animal.ahrgr.de/iticseWG.html
. 

In terms of the size of the respondents’ institutions, for 
the Grissom survey the average enrollment was 7893 
students. For the pre-conference survey, the responses to 
item 2.1 showed that the average enrollment across the 29 
respondents’ institutions was 7402 students, with the 
distribution of size representing the full range of 
possibilities: Two respondents (7%) came from institutions 
with 500 or fewer students; three respondents (10%) had 

501 to 1000 students at their institution; four institutions 
(14%) had from 1001 to 2000 students; six institutions 
(21%) had 2001 to 4000 students; five respondents (17%) 
each reported the ranges 4001 to 7500 students and 7501 to 
15000 students enrolled; and four institutions (14%) had at 
least 15001 students enrolled. 

Item 2.2 from the pre-conference survey asked 
respondents approximately how many students are studying 
computing as a major, minor, or service course at their 
home institutions. The form of the response for each area 
was open-ended, so respondents entered their own numeric 
responses rather than being constrained to a menu of 
choices. The number of majors reported varied from 50 to 
3000, with nine (31%) reporting 50 to 100 majors, sixteen 
(55%) reporting 101 to 1000 majors, and five (17%) 
reporting 1001 to 3000 majors. There was no apparent 
relationship between size of institution and number of 
computing majors reported. For two respondents (7%), the 
size of the institution matched the number of majors (1500 
and 2000, respectively); as expected, neither of these 
respondents reported any students with computing as a 
minor or service course. Two respondents did not respond 
to this item. As a point of comparison, the Grissom survey 
resulted in an average of 559 computing majors, while the 
average for the pre-conference survey was 561 computing 
majors. 

For the number of students with computing as a minor 
and in computing service courses, nine (31%) and ten 
(38%) respondents either reported none in the respective 
category or gave no response. The number of minors 
reported ranged from 5 to 3900, with twelve (41%) 
reporting 10 or fewer minors, six (21%) reporting 11 to 50 
minors, four (14%) reporting 51 to 600 minors, and five 
(17%) reporting 1000 to 3900 minors. The number of 

 Grissom 
Survey 
(July 
2000) 

Pre-
conference 
Survey 
(April-June 
2000) 

Informal 
Index Card 
Survey 
(June 
2000) 

Number of 
respondents 

91 29 66 

Nr. of 
countrries 

21 11 - 

Average 
teaching 
experience 
[years] 

17 14 - 

Avg. number 
CS faculty 

17 23 - 

Population 
surveyed 

ITiCSE 
2000 
Particip. 

Various 
listserv lists 

ITiCSE 
2002 Atten 
dees 
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students reported in service courses ranged from 10 to 
5000, with fourteen (48%) reporting 100 or fewer students, 
seven (24%) reporting 101 to 900 students, and six (21%) 
reporting 1000 to 5000 students in service courses. Once 
again, there was no apparent relationship between number 
of students studying computing as a minor or service 
course and the total number of students enrolled in the 
institution. The Grissom survey did not consider the 
number enrolled in minor or service courses. For the pre-
conference survey, averaging only over the non-zero/non-
missing responses, there were an average of 495 minors 
and an average of 818 students in service courses. 

Items 2.3 and 2.4 from the pre-conference survey asked 
for the number of faculty responsible for teaching 
computing courses and the number of faculty, including the 
respondent, who use dynamic visualizations to support 
learning. The number of computing faculty ranged from 2 
to 100, with eight (28%) reporting 2 to 8 faculty members, 
twelve (41%) reporting 11 to 30 faculty members, five 
(17%) reporting 40 to 100 faculty members, and two (7%) 
omitting this item. The number of faculty using dynamic 
visualizations ranged from 1 to 20, with three respondents 
(10%) each reporting they had 1, 2, 4, and 5 faculty 
members using dynamic visualization, eight (28%) 
reporting 3 faculty members, two reporting 10 faculty 
members, three (10%) reporting 15 to 20 faculty members, 
two (7%) reporting that no faculty are using dynamic 
visualization, and two (7%) who omitted this item. For the 
pre-conference survey, the average number of computing 
faculty was approximately 24; the average number of 
faculty members using dynamic visualizations to support 
learning was slightly less than 5. On the Grissom survey, an 
average of 17 faculty members were responsible for 
teaching computing courses at the respondents’ institutions; 
no results were available for the number of computing 
faculty who use computer-based visualizations to support 
student learning. 

Comparing the responses to items 2.3 and 2.4 from the 
pre-conference survey, the ratio of faculty using dynamic 
visualizations to the number of computing faculty at an 
institution ranges from 4% to 75%. Three respondents 
(10%) reported a ratio in the range 4% to 10%, nine (31%) 
reported a ratio in the range 11% to 20%, ten (34%) 
reported a ratio in the range 31% to 50%, and two (7%) 
reported a ratio of 75%. One response was hard to interpret 
because the  

respondent said that the number of faculty using 
dynamic visualizations was greater than the number of 
faculty responsible for teaching computing courses (17 to 
2). 

Items 2.6 and 2.7 on the pre-conference survey asked 
the respondent to report the most common classroom set-
ups at their institution and the classroom set-up they 
personally used most often. Table 2 summarizes the results 
of these two items. The most common set-up, reported by 
about half of the respondents, is that the computer and a 
ceiling-mounted projection system remain in the room. 
Nearly as common (reported by 41%) are classrooms where 
the projector is permanently mounted and the instructor 
brings their own computer. It is equally common (reported 
by 41%) to have the students sitting at terminals during 
class but with no central coordination with the instructor’s 

equipment. The type of classroom that respondents 
normally teach in reflects the same trends as observed in 
the common classroom set-ups.  
 

In terms of the size of the respondents’ institutions, for 
the Grissom survey the average enrollment was 7893 
students. For the pre-conference survey, the responses to 
item 2.1 showed that the average enrollment across the 29 
respondents’ institutions was 7402 students, with the 
distribution of size representing the full range of 
possibilities: Two respondents (7%) came from institutions 
with 500 or fewer students; three respondents (10%) had 
501 to 1000 students at their institution; four institutions 
(14%) had from 1001 to 2000 students; six institutions 
(21%) had 2001 to 4000 students; five respondents (17%) 
each reported the ranges 4001 to 7500 students and 7501 to 
15000 students enrolled; and four institutions (14%) had at 
least 15001 students enrolled. 

Item 2.2 from the pre-conference survey asked 
respondents approximately how many students are studying 
computing as a major, minor, or service course at their 
home institutions. The form of the response for each area 
was open-ended, so respondents entered their own numeric 
responses rather than being constrained to a menu of 
choices. The number of majors reported varied from 50 to 
3000, with nine (31%) reporting 50 to 100 majors, sixteen 
(55%) reporting 101 to 1000 majors, and five (17%) 
reporting 1001 to 3000 majors. There was no apparent 
relationship between size of institution and number of 
computing majors reported. For two respondents (7%), the 
size of the institution matched the number of majors (1500 
and 2000, respectively); as expected, neither of these 
respondents reported any students with computing as a 
minor or service course. Two respondents did not respond 
to this item. As a point of comparison, the Grissom survey 
resulted in an average of 559 computing majors, while the 
average for the pre-conference survey was 561 computing 
majors. 

For the number of students with computing as a minor 
and in computing service courses, nine (31%) and ten 
(38%) respondents either reported none in the respective 
category or gave no response. The number of minors 
reported ranged from 5 to 3900, with twelve (41%) 
reporting 10 or fewer minors, six (21%) reporting 11 to 50 
minors, four (14%) reporting 51 to 600 minors, and five 
(17%) reporting 1000 to 3900 minors. The number of 
students reported in service courses ranged from 10 to 
5000, with fourteen (48%) reporting 100 or fewer students, 
seven (24%) reporting 101 to 900 students, and six (21%) 
reporting 1000 to 5000 students in service courses. Once 
again, there was no apparent relationship between number 
of students studying computing as a minor or service 
course and the total number of students enrolled in the 
institution. The Grissom survey did not consider the 
number enrolled in minor or service courses. For the pre-
conference survey, averaging only over the non-zero/non-
missing responses, there were an average of 495 minors 
and an average of 818 students in service courses. 

Items 2.3 and 2.4 from the pre-conference survey asked 
for the number of faculty responsible for teaching 
computing courses and the number of faculty, including the 
respondent, who use dynamic visualizations to support 
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learning. The number of computing faculty ranged from 2 
to 100, with eight (28%) reporting 2 to 8 faculty members, 
twelve (41%) reporting 11 to 30 faculty members, five 
(17%) reporting 40 to 100 faculty members, and two (7%) 
omitting this item. The number of faculty using dynamic 
visualizations ranged from 1 to 20, with three respondents 
(10%) each reporting they had 1, 2, 4, and 5 faculty 
members using dynamic visualization, eight (28%) 
reporting 3 faculty members, two reporting 10 faculty 
members, three (10%) reporting 15 to 20 faculty members, 
two (7%) reporting that no faculty are using dynamic 
visualization, and two (7%) who omitted this item. For the 
pre-conference survey, the average number of computing 
faculty was approximately 24; the average number of 
faculty members using dynamic visualizations to support 
learning was slightly less than 5. On the Grissom survey, an 
average of 17 faculty members were responsible for 
teaching computing courses at the respondents’ institutions; 
no results were available for the number of computing 

faculty who use computer-based visualizations to support 
student learning. 

Comparing the responses to items 2.3 and 2.4 from the 
pre-conference survey, the ratio of faculty using dynamic 
visualizations to the number of computing faculty at an 
institution ranges from 4% to 75%. Three respondents 
(10%) reported a ratio in the range 4% to 10%, nine (31%) 
reported a ratio in the range 11% to 20%, ten (34%) 
reported a ratio in the range 31% to 50%, and two (7%) 
reported a ratio of 75%. One response was hard to interpret 
because the respondent said that the number of faculty 
using dynamic visualizations was greater than the number 
of faculty responsible for teaching computing courses (17 
to 2). 

Items 2.6 and 2.7 on the pre-conference survey asked 
the respondent to report the most common classroom set-
ups at their institution and the classroom set-up they 
personally used most often. Table 2 summarizes the results 
of these two items.  
 

 
 

Common classroom set-
ups 

  

Classroom taught in 
most often 

 
Computer and ceiling-mounted projection system 
remain in the room  

 14 (48%)   11 (38%) 

Projector remains in class-room, bring own 
computer  

 12 (41%)   5 (17%) 

Students sit at terminals, but no central coordination 
w. instructor’s equipment  

 12 (41%)   4 (14%) 

Computer(s) & projector(s) delivered to the 
classroom as needed  

 8 (28%)   3 (10%) 

Computers and projectors not available   5 (17%)   1 (3%) 
Projector remains in classroom, computer is 
delivered  

 4 (14%)   1 (3%) 

Students sit at terminals that are coordinated with 
instructor’s equipment (e.g. instructor can see what 
student is doing)  

 4 (14%)   1 (3%) 

Computer remains in classroom, projector delivered 
as needed  

 1 (3%)   3 (10%) 

Table 2: Common classroom set-ups and classroom set-up used most often 
 

The most common set-up, reported by about half of the 
respondents, is that the computer and a ceiling-mounted 
projection system remain in the room. Nearly as common 
(reported by 41%) are classrooms where the projector is 
permanently mounted and the instructor brings their own 
computer. It is equally common (reported by 41%) to have 
the students sitting at terminals during class but with no 
central coordination with the instructor’s equipment. The 
type of classroom that respondents normally teach in 
reflects the same trends as observed in the common 
classroom set-ups.  

The Grissom survey included an item similar to item 
2.7 from the pre-conference survey: “Which describes the 
classroom you teach in the most often? ”; It is interesting to 
note that the percentage of respondents with classroom set-
ups with permanently installed computer and ceiling-
mounted projection systems was much higher among the 91 
respondents for the Grissom survey (62%) than for the 29 
respondents for the pre-conference survey (48%). The 
number of respondents reporting that a computer and 
projector are delivered to the classroom as needed was 

similar: 21% for the Grissom survey and 28% for the pre-
conference survey. On the Grissom survey, 10% of the 
respondents reported that computers and projectors were 
not available, compared to 17% from the pre-conference 
survey. The only other category reported on the Grissom 
survey, that the rooms had permanently installed computers 
and the projector was delivered as needed, included 7% of 
the respondents, compared to 3% of the respondents for the 
pre-conference survey. 

With respect to the teaching experience of respondents, 
the respondents for the Grissom survey reported an average 
of 17 years. For the pre-conference survey, responses on 
item 3.1 resulted in an average of 14 years of teaching 
experience, with two respondents (7%) reporting 1-4 years, 
nine respondents (31%) 5-10 years, five respondents (17%) 
11-14 years, seven respondents (24%) 15-22 years, and six 
respondents (21%) 24 or more years of experience. 
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2.2.3 Results related to using visualization in 
teaching  

The initial item on the pre-conference survey, item 1.1, 
asked respondents to indicate their strength of agreement 
with the statement “Using visualizations can help students 
learn computing concepts.” All 29 respondents either 
strongly agreed or agreed with this statement (59% and 
41%, respectively). The Grissom survey did not include 
such an item. On the index card survey, twenty nine of 67 
respondents (43%) strongly agreed with this statement, 
thirty three (49%) agreed, and the remaining five (8%) 
indicated that they were neutral or had no opinion. Out of 
the 93 computer science educators who responded to this 
question in the surveys, none disagreed at all with the 
premise that visualizations can help students as they learn 
computing concepts. This strong perception among 
educators that visualization can help makes the lack of 
direct supporting evidence (see Section 2.3) particularly 
intriguing. 

In polling respondents for how they use visualization, 
the Grissom survey addressed the use of both static and 
dynamic visualizations in the classroom. As shown in 
Table 3, all respondents indicated that they used static 
visualizations such as slides, images, and hand-drawn 
figures on the board at least sometimes. For dynamic 
visualizations such as computer software, animations, and 
interactive demonstrations, over half of the respondents 
used dynamic visualizations in the classroom only a few 
times per term, with 13% never making use of dynamic 
visualizations. Only a quarter of the respondents used 
dynamic visualizations at least once per week. The Grissom 
survey also looked at how students used dynamic 
visualizations outside of class. Nearly one quarter of the 
respondents said that students never used dynamic 
visualizations outside of class; slightly more than half 
reported that students used dynamic visualizations outside 
of class at least a few times per term. 

 
 Almost 

every day 
Once per 

week 
A few 

times per 
term 

never 

Static   72%   20%  8%  0%
Dynamic   10%   23%  54%  13%
Dynamic 
outside 
class  

 5%   19%  53%  23%

Table 3: Frequency of Visualization Use in Grissom’s 
Survey 

 
For the pre-conference survey, we chose not to ask 

respondents about their use of static visualization, since we 
believe that virtually all computing instructors use some 
form of static visualization frequently. Thus, the pre-
conference survey focused solely on the use of dynamic 
visualization. When asked how they have used dynamic 
visualizations in item 1.2, 97% (all but one respondent) 
replied that they at least occasionally demonstrate 
visualizations during classroom lectures. [These 
percentages pool the responses for the three positive 
options used extensively (about every week), used 

frequently (about every other week), and used on occasion 
(at least once or twice per term).] About two-thirds of the 
respondents reported that they make visualizations 
available for student use outside of closed laboratories, 
nineteen (66%) with prior guidance or instruction and 
seventeen (59%) without prior guidance or instruction. 
Seventeen of the respondents (52%) indicated that they 
required student use in a closed, supervised lab, and the 
same number indicated that visualizations are available for 
optional student use in a closed, supervised lab. Only 
twelve of the respondents (41%) require student use during 
classroom lectures. 

The second item on the index card survey asked 
ITiCSE 2002 participants to indicate how frequently they 
use algorithm visualizations in their teaching. Two out of 
64 respondents who answered this item (3%) replied that 
they use visualizations nearly every week, fifteen (23%) 
that they use them every other week, and twenty nine 
(45%) that they use visualizations only once or twice per 
term. Eighteen respondents (28%) indicated that they never 
use such visualizations. 

All of these responses about frequency of use point to 
the fact that, even among educators who use visualization, 
few tightly integrate it with other aspects of their courses. 
This contrasts sharply with the experience of educators at 
Brown University, where they found early success with 
Marc Brown’s BALSA system [8]. They claimed:  

Much of the success of the BALSA system at 
Brown is due to the tight integration of its 
development with the development of a textbook 
and curriculum for a particular course. BALSA was 
more than a resource for that course - the course was 
rendered in software in the BALSA system [3].  

We will return to the issue of whether students are 
sufficiently familiar with the visualization tools they use 
when we discuss covariant factors in Section 4.4. 

In interpreting the pre-conference survey, we were also 
curious about certain combinations of ways in which the 
respondents use dynamic visualization. For example, six 
respondents (21%) require that students use visualizations 
during classroom lectures as well as for both required and 
optional use in a closed, supervised lab. Five additional 
respondents (17%) who require use during classroom 
lectures also have some sort of use in a closed, supervised 
lab; two of these (7%) require use in the lab setting, while 
for three (10%) such use is optional. In another 
comparison, we discovered that ten respondents (34%) 
make visualizations available for student use outside of a 
closed lab setting both with and without prior guidance and 
instruction. An additional fourteen respondents make 
visualizations available for student use outside of a closed 
lab setting, with a split of eight (28%) giving prior 
guidance or instruction and six (21%) without prior 
guidance. 

Item 1.3 of the pre-conference survey asked 
respondents to indicate all ways in which learners use 
visualization. Three of the respondents (10%) indicated that 
students do not directly use visualizations. Nine of the 
respondents (31%) indicated that students must construct 
their own visualizations, for example, as homework. Seven 
of the respondents (24%) indicated that their students have 
tools available so they can construct their own 
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visualizations. Six of the respondents (21%) indicated that 
students are encouraged to construct their own 
visualizations. None of these respondents chose the option 
students present their own visualizations. Four respondents 
(14%) filled in the other option: one indicated that students 
have the tools they make available helps student to 
visualize program structure; another indicated "passive 
use"; a third said the visualizations were pre-built for the 
students; and the fourth said that students use but do not 
construct visualizations. 

Item 1.4 of the pre-conference survey asked what 
learners do along with the visualization. This question was 
designed in part to elicit information about the use of 
mediated transfer. [These percentages pool the responses 
for the three positive options used extensively (about every 
week), used frequently (about every other week), and used 
on occasion (at least once or twice per term).] Twenty six 
of the respondents (90%) indicated that students watch the 
visualization in class. Twenty one (72%) said that students 
use the visualization in lab exercises. Twenty one (72%) 
replied that students must construct the visualization, while 
twenty (69%) have students experiment with different data 
sets. Fifteen (52%) ask students to give brief oral responses 
during class to questions about the visualization. Thirteen 
of the respondents (45%) say students must give written 
answers to describe their understanding of the visualization 
in an open-ended format such as an essay question. Eleven 
(38%) ask students to give written answers to closed-form 
questions about the visualization, such as fill-in-the-blank, 
multiple-choice, or short answer. Ten (34%) ask students to 
give longer, more open-ended oral responses to describe 
their understanding of the visualization. In the final 
comments, one respondent explained that one way they use 
visualizations is to ask students “what if” questions; the 
student must then develop a hypothesis and test it. 

When asked on item 1.5 of the pre-conference survey 
to describe any ways in which they had used visualizations 
besides the options mentioned in items 1.2 - 1.4, eleven 
respondents provided comments. One respondent described 
the use of stacking cups to demonstrate sorting algorithms; 
students then study Java applets demonstrating the sorts, 
and finally must transfer that experience to sorting the cups, 
including a physical demonstration of the sorting 
algorithms with the stacking cups as part of their exam. 
Another respondent mentioned using conceptual maps for 
working with object-oriented programming concepts. A 
third respondent clarified that students construct 
visualizations, show how given data structures are modified 
by given algorithms, and then must present the state of the 
data structure in a visual form that is submitted to a server 
that assesses it and gives feedback for the student. Yet 
another respondent said that students learn to express data 
models using entity relation diagrams and relational 
schema, and work extensively with data-structure diagrams 
such as indexes, B-trees, and B+ trees to study search 
operations as well as the effects of operations such as insert 
and delete. This respondent also has students use many 
graph and tree models to represent different problems and 
to design solutions using graph algorithms. Another 
respondent said that students select to work with a 
visualization package to produce a non-scientific data 
visualization using atypical visualization paradigms, for 

example, in genealogy. Another respondent values 
visualization to help make issues tangible and uses 
visualization for simple examples such as how compilation 
or event composition works. Another respondent described 
a system that has been used world-wide and provides 
students with an environment where they can test virtually 
every important concept in geometric modeling. This 
software is used in a classroom that merges the ideas of lab 
and lecture to do demonstrations, design, and exercises. 
Students are also required to use this system to generate test 
data for their programming assignments. This respondent 
also discusses another system, designed to teach multi-
threaded programming, with an automatic visualization 
component that can be activated automatically by a user 
program. Students are required to use this system for their 
programming assignments, which allows them to see the 
concurrently running threads, the dynamic behavior of the 
threads, and all activities of synchronization primitives. 

Item 1.6 of the pre-conference survey was a free-
response item that asked respondents to explain their 
pedagogical aim in using visualizations. Twenty-two 
respondents (76%) provided comments. Several 
respondents mentioned that dynamic visualization is useful 
in explaining dynamic behavior or state changes. Others 
mentioned that the use of dynamic visualization helps 
improve comprehension of both theoretical and practical 
issues because it makes the ideas more tangible. One 
respondent observed that dynamic visualization gives 
students immediate feedback and also helps students 
understand patterns that abound in the structures. Another 
respondent has observed in twenty years of teaching that 
everyone learns better through visualization. This 
respondent believes that visualization and kinetic 
experience better instill learning in long-term memory than 
do other sensory and cognitive processes and concluded 
with the observation that learners better manipulate 
symbols when they have visual representations of process. 
A second respondent explained that visualizations have 
progressed from a series of PowerPoint slides to GIF 
animations to flash “movies”. This respondent’s students 
claim that visualization helps them understand how the 
algorithms work. Another respondent uses visualizations to 
convey more difficult or visually oriented material, 
explaining that dynamic visualizations express such ideas 
more clearly and succinctly than words do. Another 
respondent expressed a similar notion, observing that when 
students exercise on a conceptual level how algorithms 
work, they understand the algorithms better. This 
respondent went on to say that visual representation of the 
data structure supports this conceptual understanding, 
because implementation details no longer blur the students’ 
view. Another respondent has used visualizations to help 
students achieve a deeper understanding of class concepts. 
This respondent has found that dynamic visualizations 
reach a broader cross-section of students than do some 
other pedagogical techniques. Another respondent 
commented that visualizations are fun for students and 
instructors alike. Yet another respondent reinforced this 
view by observing that visualization provides better 
motivation for students as well as better illustration of the 
dynamic nature of algorithms and data structures. This 
respondent values the use of thought-provoking questions 
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combined with visualization, since this tends to encourage 
interesting discussions. Another respondent described the 
use of dynamic visualizations that are created on the fly 
from source code; paradoxically, these visualizations are 
also fairly static, in that there is no animation. This 
respondent feels that these visualizations express 
relationships between classes in a much more obvious way 
than is possible with a textual description. In general, this 
respondent feels that by presenting the same concepts both 
verbally and graphically, students seem to profit from 
experiencing two approaches to the same material. 

Item 1.7 asked respondents to list courses at their 
institutions where dynamic visualization is used regularly. 
The most frequently named course was data structures, 
both with and without mention of an algorithms 
component. Other courses mentioned by more than one 
respondent were CS1, introductory programming (perhaps 
the same as CS1?), computer networks, artificial 
intelligence, software engineering, databases, and survey of 
CS/CS0. Courses that were mentioned once include 
compilers, computer architecture, CS theory, data mining, 
data visualization, image processing, office technologies, 
multimedia and Internet technologies, scientific 
visualization, and simulation and modeling. 

Item 1.8 asked respondents to indicate benefits that 
they had experienced from using visualization; the form of 
the item allowed respondents to select any number of the 
options. In designing the items, we were unable to use 
results from the Grissom survey; while that survey included 
a similar item, the results were unavailable. Instead, we 
generated the options through an informal process of 
polling working group members and colleagues. In 
decreasing order of frequency based on the pooled 
responses for the two positive options a major benefit and a 
minor benefit, the benefits were:  

• 90%: the teaching experience is more enjoyable  
• 86%: improved level of student participation  
• 83%: anecdotal evidence that the class was more 
fun for students  
• 76%: anecdotal evidence of improved student 
motivation  
• 76%: visualization provides a powerful basis for 
discussing conceptual foundations of algorithms  
• 76%: visualization allows meaningful use of the 
available technology  
• 72%: anecdotal evidence of improved student 
learning  
• 62%: (mis)understandings become apparent when 
using visualization  
• 52%: objective evidence of improved student 
learning  
• 48%: interaction with colleagues as a benefit  

Item 1.9 was a free-response item that allowed 
respondents to list additional benefits they had experienced 
from using visualization. Eight respondents (28%) provided 
comments. One respondent mentioned the advantage of 
anonymous help-seeking. Another mentioned that with 
visualization, big-O measures of efficiency have been 
transformed from one of the most difficult concepts into a 
straightforward one. This respondent also observed that 
students spend much more time when visualization is 
involved. Another respondent remarked that data 

visualization is a good way to get students thinking about 
space, time, processes, and communication. Yet another 
respondent felt that dynamic visualizations capture 
students’ attention, particularly when color and sound are 
used effectively. Another respondent had no evidence to 
support this observation, but felt that students grasp the 
main concepts quicker and more easily (and with less effort 
from the instructor). Another respondent observed that 
algorithm simulation exercises promote learning but at the 
same time was uncertain whether this benefit comes from 
compulsory exercises and automatic assessment of the 
submitted solutions, or from the visual form used when 
constructing the solutions. 

For the Grissom survey, respondents were asked to 
describe up to two reasons they were reluctant or unable to 
use visualizations. The reasons listed included time (for 
developing visualizations, installing software, transitioning 
into the classroom, learning new tools, and preparing 
courses); equipment (including concerns about availability 
and reliability); the lack of effective and reliable software; 
platform dependence and the lack of effective development 
tools; the difficulty of adapting existing materials to teach 
what and how the educator wants to teach; the fact that 
students are too passive if they simply watch 
demonstrations in a darkened room; a concern that AV may 
hide important details and concepts; and the lack of 
evidence of effectiveness. 

Item 1.10 for the pre-conference survey asked about 
factors that make the respondent or the respondent’s 
colleagues reluctant or unable to use dynamic 
visualizations. To develop the options for this item, we 
began from the list of factors from the Grissom survey 
presented in the previous paragraph. Respondents could 
select any combination of options that reflect factors they 
believe discourage the use of dynamic visualization. In 
decreasing order of frequency based on pooling the 
responses for the two positive options a major factor and a 
minor factor, the impediments were:  

• 93%: time required to search for good examples 
(on the Web, in the literature)  
• 90%: time it takes to learn the new tools  
• 90%: time it takes to develop visualizations  
• 83%: lack of effective development tools  
• 79%: time it takes to adapt visualizations to 
teaching approach and/or course content  
• 69%: lack of effective and reliable software  
• 69%: time it takes to transition them into the 
classroom  
• 66%: unsure of how to integrate the technology 
successfully into a course  
• 66%: time it takes to install the software  
• 59%: lack of evidence of effectiveness  
• 55%: concerns about the equipment or 
presentation location (e.g. darkened room)  
• 48%: unsure of how algorithm visualization 
technology will benefit students  
• 38%: students are too passive  
• 31%: AV may hide important details and 
concepts  

Item 1.11 of the pre-conference survey was a free-
response item that asked respondents for reasons other than 
those listed in item 1.10 that make the respondent or 
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colleagues reluctant to use dynamic visualizations. Seven 
respondents (24%) provided such comments. One 
respondent was unable to share colleagues’ ideas about 
visualization, having never discussed the topic with them in 
any detail. Another respondent, a self-described developer 
of visualization tools, observed “the above questions are 
not my concerns”. Another comment was a reaction to the 
option in item 1.10 that students are too passive when 
viewing visualizations; this respondent observed that, to the 
contrary, students become more active when they are 
dealing with visualizations. Another respondent remarked 
that the impediment is being too busy with other work to 
make big changes in course content and presentations. Yet 
another respondent mentioned cost and resource issues. 
Another respondent is convinced that the most profound 
reason colleagues do not use dynamic visualization is a 
personality characteristic that permits one teacher to engage 
in high risk behavior such as using children’s toys as 
instructional props. This respondent observes that some 
educators feel it is very high risk to engage in this sort of 
extravert activity. 

In item 1.12 for the pre-conference survey, we 
provided several options for techniques respondents might 
use to evaluate the effectiveness of visualization. 
Respondents could select any number of the options. In 
decreasing order of frequency based on pooling the 
responses for the two positive options major source of 
information and minor source of information, the most 
often used evaluation techniques were:  

• 83%: informal feedback during class  
• 83%: informal feedback outside of class  
• 52%: brief paper-and-pencil questionnaire at the 
end of the term  
• 48%: brief paper-and-pencil questionnaire during 
class  
• 45%: informal comparison of results between two 
or more groups  
• 34%: on-line questionnaire at the end of the term  
• 21%: on-line questionnaire during class  

Respondents were invited to elaborate on their 
evaluation approach(es) and results in item 1.13, a free-
response item. Five respondents (17%) provided such 
comments. One respondent mentioned assessing student 
work using pre-defined objectives and rubrics. Another 
respondent had used a pre-test, a post-test, and an 
anonymous attitudinal survey that includes more than 40 
questions for each course. The attitudinal survey permitted 
students to rate each topic and feature of the visualization 
tool. Another respondent has compared student behaviors 
from before beginning to use visualization and simulations 
to behaviors after using these techniques. This respondent 
has observed a profound difference between the student’s 
being able to reproduce code and being able to physically 
manipulate a group of physical objects such as people or 
stacking cups. The fourth respondent described evaluation 
work that concentrates on the effect of automatic 
assessment of algorithm simulation exercises. The fifth 
respondent had just started using a formal approach to the 
evaluation of visualizations. 

2.2.4 Discussion of results 
The respondents to the pre-conference survey seemed 

generally knowledgeable about visualization and convinced 
that visualization can make a difference in helping learners 
better learn concepts. As evidence of the overall knowledge 
of the respondent pool, eleven respondents from the pre-
conference survey (38%) indicated that they had created 
their own visualization tools from scratch. 

When asked to indicate their level of agreement with 
the statement Using visualizations can help learners learn 
computing concepts, all respondents for the pre-conference 
survey and 93% of the respondents for the index card 
survey agreed or strongly agreed. That is, among these 98 
computing educators, only five responded that they were 
neutral or had no opinion; no one disagreed with the 
statement to any degree. This overwhelming belief that 
visualization can improve learning is somewhat surprising 
given the lack of empirical evidence that visualization 
really does help. Our concern that the results from the pre-
conference survey were biased toward individuals who 
were favorably inclined toward the use of visualization led 
us to design the index card survey. We believed that folks 
attending ITiCSE 2002 were less likely to be biased 
favorably toward visualization than the individuals who 
chose to complete the pre-conference survey. Thus, the 
index card survey strengthened our understanding that 
computing educators are convinced that visualization can 
make a difference in helping learners better learn concepts. 

While none of the surveys addressed the effectiveness 
of visualizations that produce a sequence of discrete 
snapshots versus those that portray an algorithm’s 
execution via a smoothly continuous animation, two 
respondents volunteered knowledgeable commentary. They 
observed that continuous animation offers no real 
advantage in the learning that occurs. One of these 
respondents indicated that smooth animations “are not as 
useful since there is little time for the learner to notice 
patterns. It is better to lay out the frames in sequence or in 
other arrangements to allow viewers to look for patterns 
without time pressure”. The other response came from a 
psychologist studying the effectiveness of visualizations in 
a variety of learning contexts. This respondent indicated 
“As for animations, there are no well-controlled studies 
showing any advantages of animated over still graphics in 
teaching. ... We give a cognitive analysis of why 
animations aren’t more successful. In addition, we have 
some half dozen studies of our own where visualizations 
helped over equivalent text, but animated visualizations 
were no better than static ones.” These observations lead us 
to wonder about the learning pay-off, if any, for smooth 
animations. While many individuals involved in 
visualization research have worked long and hard to 
achieve smooth animations, this type of comment suggests 
that such efforts may have little or no influence in 
improving learning. 

A dilemma that may be inescapable when developing 
animations is the very personal nature of the visual 
mapping in the viewer’s mind and what the graphics can 
depict. One respondent observed “There are too many 
journals and conferences. I rarely used web repositories 
because the tools that I want are rarely available or not up 
to my and my students’ expectation.” This same respondent 
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added in another response “Most visualization tools do not 
address the real needs of students. People designed so many 
visualization tools for visualization and/or animation only 
and forgot what these tools are for. As a result, on the 
surface, many of these tools have a pretty face without 
content. Many designers only consider their wants and 
never put themselves into the shoes of the users.” Despite 
the negative tone of this response, it does indicate that, 
even among experts who understand algorithms, there is 
often little agreement about what the visual display should 
be. Perhaps designers of visualizations must do a better job 
of analysis before plunging into the design and 
implementation of visualization tools. In this case, the 
question is how to proceed with such an analysis. 

Item 1.2 from the pre-conference survey indicated that 
the most frequent use of visualizations is for 
demonstrations during classroom lectures. The next most 
frequent uses were to have the visualization available for 
student use outside of a closed lab setting, both with and 
without prior guidance or instruction. All three of these 
strategies involve learners in relatively passive interactions 
with the visualizations. In response to item 1.4 from the 
pre-conference survey, 17% of the respondents indicated 
that they never ask learners to construct the visualization. 
The responses to item 1.4 also reveal that only about half of 
the respondents ask their students to respond to written or 
oral questions about the visualizations that are used in the 
course. We must conclude that, for many computing 
educators, even though they use visualizations, the 
visualizations are not really woven into the instructional 
fabric of the course. If an educator does not expect learners 
to be able to converse and answer questions about activities 
they carry out as part of the learning process, why require 
the activity? One respondent emphasizes the value of 
having learners do exercises directly related to the 
visualizations by pointing out that the exercises are more 
important than the visualizations themselves. This 
respondent states “We know that algorithm simulation 
exercises promote learning. However, it is not clear 
whether this benefit comes from compulsory exercises and 
automatic assessment of the submitted solutions, or from 
the visual form used when constructing the solutions.” If 
this is indeed the case, then the logical conclusion is that 
educators who are engaged in visualization need to devote 
more time to the accompanying instructional materials, 
rather than having a single-minded focus on the graphics of 
visualization. 

An interesting issue is whether there are any 
advantages to having learners actively engage in some form 
of viewing expert-constructed visualizations over having 
learners construct their own visualizations as part of 
programming or other exercises. One respondent is very 
convinced that the latter is of greater value. This respondent 
observed: “I have also assigned students to prepare 
animations using some home grown software ... . The 
students implement standard graph algorithms and can see 
their code animated. ... It seems to be a much more 
engaging activity than working through animations 
exercises that I have packaged together.” A related issue is 
the amount of time that students spend working with the 
material when visualization is involved. One respondent 
observed that students spend much more time when 

visualization is involved. If learners are spending more 
time, does this mean they are learning more material, 
getting a deeper understanding of concepts, or simply being 
distracted by the features of the visualization?  

An underlying and important question when 
considering the use of visualization is whether some kinds 
of learners are better served by visualization. One 
respondent pondered that the computing curriculum is 
attracting more and more right-brain learners, in spite of 
being a left-brain curriculum. It makes sense to consider 
learning characteristics in studies designed to determine the 
effectiveness of visualization, since this may reveal 
information that will assist researchers in customizing tools 
to better serve different learning styles. 

Item 1.10 addressed the issue of what makes educators 
reluctant to use visualization. We offered fourteen possible 
reasons an instructor might feel reluctant to use 
visualization. The option that was cited as a major 
impediment by two-thirds of the respondents was the time 
it takes to develop visualizations. Four other options were 
listed as major impediments by 45%-48% of the 
respondents. These were the time required to search for 
good examples, the time it takes to learn the new tools, the 
time it takes to adapt visualizations to teaching approach 
and/or course content, and the lack of effective 
development tools. It is telling that four of these five 
factors are related to the precious commodity of time. This 
hints that the most effective way to enable more instructors 
to use visualization will be to make it less time-consuming 
and more convenient to do so. Although we feel that this 
conclusion is a key result that can be gleaned from our 
survey, it is not a topic that our report will address in depth. 

The responses to item 1.12, which asked respondents 
about the techniques they have used for evaluating the 
effectiveness of visualization efforts, showed that, with few 
exceptions, evaluation was based largely on informal 
feedback or brief pencil-and-paper questionnaires. Thus, 
the evidence these respondents have collected is primarily 
anecdotal. One respondent observed “One of the areas I 
would like to see your group address is how to measure 
student engagement and student learning for programming 
exercises involving visualization that take place outside of 
class over a period of a week or two. I believe that students 
find these very engaging, but I have no notion of how to 
collect data to illustrate this.”  

In the next section, we look at experimental results 
from prior studies of visualization effectiveness. These 
studies shed some light on what has been done in this area 
in the past, as well as providing an impetus for the work we 
propose in Sections 3, 4, and 5 of our report. 

2.3 Review of Experimental Studies of 
Visualization Effectiveness 

In [28], Hundhausen reports a meta-analysis of twenty-one 
experiential evaluations. The striking result from this meta-
analysis is that the studies cast doubt on the pedagogical 
benefits of visualization technology. Indeed only 13 of 
those experiments ([11, §2 and 3]; [13]; [23, I, II, IV, V, 
VII, VIII]; [31]; [40, Chapters 6, 7, 9]) showed that some 
aspect of visualization technology or its pedagogical 
application significantly impacted learning outcomes. 
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Further analysis of these experiments suggests that they 
fall into two broad categories based on the factors they 
identify as critical to the experimental evaluation of 
visualization. The first category is represented by the work 
of Gurka [20], Hansen et al. [23, VI-VIII], Lawrence ([40], 
Chapters 4, 5, 7, 8), and Stasko, Badre, and Lewis [56]. 
These studies varied representational characteristics of the 
learning materials, including:  

1. text versus animation,  
2. text-first or animation-first, and  
3. various graphical attributes of animations.  

By contrast, a second group of studies ([11, §2 and 3], 
[13], [23, I - V], [30], [31], and [40, Chapters 6 and 9]) 
varied the level of learner involvement. In addition to 
having learners passively view an animation, these studies 
involved learners more actively by having them do one or 
more of the following:  

1. construct their own data sets,  
2. answer strategically-chosen questions about the 
algorithm,  
3. make predictions regarding future algorithm 
behavior, or  
4. program the algorithm.  

Figure 1 summarizes these experiments, contrasting 
those with the more passive representational focus with 
those that had a more active focus on learner engagement. 
As shown, ten out of twelve (83%) experiments using 
learner engagement produced a significant result. Out of 
nine experiments that manipulated representations, only 
three (33%) showed a significant result. This suggests that 
what learners do, not what they see, may have the greatest 
impact on learning – an observation that is consistent with 
constructivist learning theory (see, for example, [47]). 

For the full meta-analysis of the twenty-one 
experiments see [28]. This expanded analysis includes an 
assessment of the extent to which the experiments support 
alternative learning theories. 

 
Figure 1: Results of visualization effectiveness experiments 

broadly classified by their independent variables 
 

Given the trend that active engagement with 
visualizations is far more important to learners than the 
graphics that they see, and given the fact that these 
previous studies do not consider the impact of visualization 
technology on instructors’ time and effort, it makes sense to 
design a new series of experiments that systematically 
explore the educational impact of alternative forms of 
active engagement with visualization technology. In the 
next section, we begin this design by classifying forms of 
learner engagement. 

3. Engagement Taxonomy 
In order to better communicate learners’ involvement in an 
education situation that includes visualization, we broadly 

define six different forms of learner engagement with 
visualization technology. Since it is certainly possible to 
learn an algorithm without the use of visualization 
technology, the first category is “No viewing,” which 
indicates that no visualization technology is used at all. 

1. No viewing  
2. Viewing  
3. Responding  
4. Changing  
5. Constructing  
6. Presenting  

While this taxonomy does in some sense reflect 
increasing levels of learner engagement, we do not consider 
this to be an ordinal scale. The relationships among these 
six forms of engagement do not form a simple hierarchical 
relationship. Figure 2 illustrates, in the form of a Venn 
Diagram, the overlapping possibilities among the last five 
of these engagement categories, with “Viewing” forming 
the universe on which all of the last four forms of 
engagement must occur. The first category in our list, “No 
viewing,” does not appear in the Venn diagram. 

 
Figure 2: Possible Overlaps in the Engagement Taxonomy. 

Basic regions are 2 (Viewing), 3 (Responding), 4 
(Changing), 5 (Constructing), 6 (Presenting) 

3.1 Viewing 
“Viewing” can be considered the core form of engagement, 
since all other forms of engagement with visualization 
technology fundamentally entail some kind of viewing. The 
Venn diagram of Figure 2 indicates this by providing 
“Viewing” as the universe in which all other forms of 
engagement exist. Viewing is also probably the form of 
engagement where the largest number of variations can be 
found. For example, a learner can view an animation 
passively, but can also exercise control over the direction 
and pace of the animation, use different windows (each 
presenting a different view), or use accompanying textual 
or aural explanations. 

Viewing by itself is the most passive of the forms of 
engagement; indeed, aside from controlling a 
visualization’s execution and changing views, viewing does 
not entail active involvement with a visualization. Note 
that, in its broadest sense [49, 50], visualization includes 
auralization; thus, we include “hearing” within this 
category.  

The remaining four categories all include viewing. 
They do not, however, create a strict hierarchy, even 
though they can be done in concert with each other (see 
intersections in Figure 2). 



www.manaraa.com

 143

3.2 Responding 
Category 3 in the engagement taxonomy is “Responding”. 
The key activity in this category is answering questions 
concerning the visualization presented by the system. For 
example, learners might be asked such questions as  

• “What will the next frame in this visualization 
look like? ” (prediction) 
• “What source code does this visualization 
represent? ” (coding) 
• “What is the best- and worst-case efficiency of 
the algorithm represented by this visualization? ” 
(efficiency analysis) 
• “Is the algorithm represented by this visualization 
free of bugs? ” (debugging)  

In the responding form of engagement, the learner uses 
the visualization as a resource for answering questions. As 
such, the engagement involves only limited interaction with 
the visualization. However, responding to a question may 
involve activities that ultimately culminate in further 
viewing activities. For example, in a debugging activity, a 
valid response to the question, “Is there a bug in this 
program? ” may be to alter source code and regenerate the 
visualization. 

3.3 Changing 
Category 4 in the engagement taxonomy, “Changing,” 
entails modifying the visualization. The most common 
example of such modification is allowing the learner to 
change the input of the algorithm under study in order to 
explore the algorithm’s behavior in different cases (for 
example, [40, Chapter 9]). Asking the learner questions, as 
in the previous category, can further enhance this form of 
engagement. For example, the system of Korhonen, Sutinen 
and Tarhio [39], based on the Matrix framework [38], 
prompts learners to provide input data sets that cover all 
possible execution paths. 

3.4 Constructing 
Category 5 in the engagement taxonomy is “Constructing”. 
In this form of engagement, learners construct their own 
visualizations of the algorithms under study. Hundhausen 
and Douglas [27] have identified two main ways in which 
learners may construct visualizations: direct generation and 
hand construction. 

• In direct generation, the most common 
construction technique, learners map a program or 
an algorithm to a visualization. This is done 
automatically for program visualizations that 
visualize the code or state of the data structure. 
Algorithm animation is a more abstract view that is 
usually achieved by annotating algorithm source 
code of algorithms under study with animation 
commands, so that animations are generated as a 
byproduct of algorithm execution [48, 55]. An 
intermediate technique is producing automatically 
program visualizations that let the user exert some 
control over the contents of the final animation, so 
that they can be tailored to a specific educational 
goal [42]. Alternatively, learners might be given a 
predefined visual representation, which they 
manipulate so as to simulate the algorithm [15, 38]. 

In this case, learners’ simulations may be 
automatically checked against the actual execution 
of the algorithm. 
• Using hand construction, learners might use a 
drawing or animation editor (for example, [12]) or 
even simple art supplies (pen, paper, scissors, etc.) 
[25], to hand-construct their own visualizations. 
Lacking a formal execution model of the algorithm, 
this technique casts learners in the role of a virtual 
machine that executes the visualization of the 
algorithm. However, in some construction-type 
editors such as JFLAP [29], the model created can 
then be executed.  

It is important to note that the “Constructing” form of 
engagement does not necessarily entail coding the 
algorithm. Indeed, while learners may need to implement 
the algorithm to be visualized if they are using direct 
generation, the implementation of the algorithm could 
certainly be supplied to them in advance. In the case of 
hand construction, there is no notion of an underlying 
“driver” algorithm’s implementation; hence, there is no 
need to code. 

3.5 Presenting 
Level 6 in the engagement taxonomy, “Presenting”, entails 
presenting a visualization to an audience for feedback and 
discussion. The visualizations to be presented may or may 
not have been created by the learners themselves. For 
example, Hundhausen [25] describes an undergraduate 
algorithms course in which learners were required to 
present visualizations of their own creation. Another 
possibility is a presentation exercise in which learners are 
required to present to their instructor and peers a 
visualization they found through a web search. 

These six categories of engagement provide a basis for 
the metrics we will propose in the next section. 

4. Metrics for Determining Effectiveness of 
Visualization 
In this section, we develop a basis for defining metrics for 
determining the effectiveness of visualization. We begin by 
discussing how Bloom’s taxonomy can be used to give a 
concrete definition of expectations for a learner’s 
understanding. Next, we provide a specific example of 
applying Bloom’s taxonomy in the context of algorithmics 
and data structures. With the examples providing context, 
we then explore factors that could be measured in order to 
demonstrate learning improvement. Finally, we explore 
additional factors that can be collected to help profile the 
learners and provide a better context for data analysis. 

4.1 Learner Understanding and Bloom’s 
Taxonomy 
In order to design studies to investigate the effectiveness of 
various strategies for engaging learners in visualization, we 
must first break down exactly what we expect of learners 
studying a particular topic, a very difficult undertaking. 
Rather than attempting to provide an all-encompassing 
breakdown for all of computer science, we use a general 
taxonomy developed by Bloom in 1956 [5]. It then 
becomes incumbent upon any particular study of 
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visualization effectiveness to define understanding within 
the particular area of CS in which that study is being 
conducted. 

Bloom’s taxonomy structures a learner’s depth of 
understanding along a linear progression of six increasingly 
sophisticated levels:  

Level 1:    The knowledge level. It is 
characterized by mere factual recall with no real 
understanding of the deeper meaning behind these 
facts. 
Level 2:    The comprehension level. At 
this level, the learner is able to discern the meaning 
behind the facts. 
Level 3:    The application level. Now 
the learner can apply the learned material in 
specifically described new situations. 
Level 4:    The analysis level. The 
learner can identify the components of a complex 
problem and break the problem down into smaller 
parts. 
Level 5:    The synthesis level. The 
learner is able to generalize and draw new 
conclusions from the facts learned at prior levels. 
Level 6:    The evaluation level. The 
learner is able to compare and discriminate among 
different ideas and methods. By assessing the value 
of these ideas and methods, the learner is able to 
make choices based on reasoned arguments.  

4.2 Algorithmics and Data Structures in the 
Context of Bloom’s Taxonomy 
 
As an example of how a researcher conducting an 
effectiveness study could map a particular area to Bloom’s 
breakdown, we develop some sample tasks in the area of 
algorithms and data structures. We recognize that creating 
such a mapping is not a trivial task and the following 
classification may raise objections. Many activities in 
algorithmics, for example implementation and analysis, 
include tasks of hugely varying complexity. Such tasks 
cover a wide range of the levels in Bloom’s taxonomy. In 
the remainder of this section, we consider some of the 
problematic issues before we present our detailed list of 
knowledge levels. 

The first issue is the differing complexity of basic 
concepts within the field of algorithmics. As in any field, 
algorithmics includes a substantial number of terms and 
concepts that build the vocabulary of the field but will be 
new to the learner. For example, basic terms of graph 
theory, like nodes, edges, paths, and cycles are easy to 
understand. In contrast, concepts such as the depth-first 
search (DFS) algorithm for traversing graphs are much 
more difficult. Knowledge about names of data structures 
and algorithms belongs to the lowest level in the taxonomy 
(knowledge level) whereas being able to explain their 
working belongs to the second level (comprehension). 

The second problematic issue is that algorithmics 
includes knowledge that can be viewed as both conceptual 
and related to implementation. It seems reasonable to 
assume that to be able to implement an algorithm a learner 
must understand its working on a conceptual level. 

However, it is unclear whether implementing an algorithm 
in a programming language belongs to level 2 
(comprehension) or to level 3 (application). If a learner 
implements an algorithm that is understood on a conceptual 
level, the learner certainly applies conceptual knowledge. 
However, implementation is just another, more detailed 
form of representing the algorithm. Thus, we propose that a 
test item to “write the code for implementing Quicksort” 
belongs to level 2 (comprehension) whereas a 
programming assignment where the learner must apply a 
sorting algorithm to sort an array of records can be 
classified as belonging to level 3 (application). 

In general, applying algorithms to solve real-world 
problems almost always requires some modifications to the 
textbook code examples learners have studied. Often 
solutions require the combination of various algorithms and 
data structures. This requires skills like analyzing the 
problem area, identifying objects and their structures, 
choosing appropriate representations for the structures, and 
deciding which algorithms and structures best apply to 
solving the problems. Problem analysis is a task belonging 
to level 4 (analysis). Constructing the solution belongs to 
level 3 (application) if learners can manage with algorithms 
that they know, or to level 5 (synthesis) if learners need to 
produce something that is new to them. Of course, the 
boundary between different problems can often be subtle, 
but assignments that require doing research to discover new 
algorithms must belong to at least level 5 (synthesis). 
Finally, when learners must evaluate their own solutions 
based on some criteria, they are working at level 6 
(evaluation), the highest level in Bloom’s taxonomy. 

The third issue we must consider is that algorithm 
analysis is a complicated undertaking that has parts 
belonging to several levels in Bloom’s taxonomy. Knowing 
the basic concepts, like big-O notation or worst-case 
complexity, belongs to level 1 (knowledge), whereas 
following and repeating analysis of some algorithm 
requires more understanding (level 2, comprehension). 
Carrying out an analysis requires learners to apply their 
knowledge of algorithm analysis to a specific problem. 
However, the range of difficulty of such analysis problems 
is large and hence difficult to pigeon-hole into just one of 
Bloom’s levels. We suggest splitting this topic across level 
3 (application), level 4 (analysis), and level 5 (synthesis). In 
writing an exam, the instructor could ask learners to 
analyze a basic algorithm covered in the course or to 
produce a simple modified version. When analyzing more 
challenging and complex solutions, learners must split the 
problem into simpler tasks (a level 4 analysis activity). 
Given these simpler tasks, learners can then analyze each 
independently. In complicated problems, learners may have 
to use and combine several different techniques to develop 
a solution, which employs skills needed in doing algorithm 
research (level 5, synthesis). Finally, when learners are 
charged with critiquing their own analysis methods and 
results, they are performing level 6 (evaluation) activities. 
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Table 4: Sample Tasks for Bloom's Comprehension Levels 1-3 

 
This initial discussion lays the groundwork for our 

example of how algorithmic knowledge can be matched to 
Bloom’s taxonomy. Tables 4 and 5 illustrate for each level 

of Bloom’s taxonomy what learners can be expected to do. 
The tables also provide concrete example tasks and 
assignments for each level. 

Level in Bloom’s 
Taxonomy 

What Can The Learner Do At This Level Sample Tasks And Assignments 

1 - Knowledge Recognize and informally define specific 
concepts in algorithmics, like stacks, trees, 
graphs, Quicksort, AVL-tree, linear probing, or 
basic analysis concepts like Big-O notation and 
worst-case complexity. 

Define the following concepts: directed graph, 
binary tree, array 
List three different sorting algorithms 

2 - Comprehension • Understand the general principle behind an 
algorithm and explain how it works using 
words and figures. 

• Define concepts formally, that is, recognize 
their essential properties and present them 
in an exact way. 

• Understand the key concepts involved in an 
algorithm and their role in the algorithm. 

• Implement the algorithm using some 
programming language and test that the 
implementation works. 

• Understand the behavior of the algorithm in 
the worst case and in the best case 

• Be able to follow and repeat the worst-case 
and best-case analysis of the algorithm. 

• Explain how the Boyer-Moore algorithm 
for string searching works. 

• Summarize the key properties of alanced 
trees. 

• Illustrate how rotations in an AVL tree 
maintain the tree's balance. 

• Explain the difference between a binary 
tree and a binary search tree. 

• Formally define a red-black tree. 
• Write the pseudocode for inserting items 

into a 2-3-4 tree. 
• Write a program that sorts an array of 

100 integers using shell sort. 
• Explain why Quicksort is, in its worst 

case, a quadratic time algorithm. 
3 - Application • Adapt a previously studied algorithm for 

some specific application, environment or 
specific representation of data. 

• Construct the best-case and worst-case 
analysis of basic algorithms. 

• Implement a program that sorts a linked 
list of strings using insertion sort and 
demonstrate that it works. 

• Apply the DFS algorithm to check 
whether a graph is connected and analyze 
the complexity of the algorithm. 

• Demonstrate the worst-case form of an 
AVL-tree, and calculate its height. 
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Table 5: Sample Tasks for Bloom's Comprehension Levels 4-6 

4.3 Other Factors to be Measured 
In the previous section, we presented the levels of 

knowledge the learner can achieve. In this section, we 
consider more closely those topics that can be measured as 
learner improvement, as well as factors that can have a 
confounding effect on results. 
1. Learner's progress 

During a course of study, learners should make 
progress so that their knowledge deepens along 
Bloom's taxonomy/hierarchy, that is, so they can begin 
to work at more advanced levels. However, this 
progress is not discrete. On each level, learners can 
perform either poorly or well, although the deeper their 
knowledge, the better they should perform at the lower 
levels. When assessing learners' knowledge, the 
hierarchical nature of knowledge must be considered. 
Suppose the instructor sets up an assignment that tests 
learners' knowledge on some level and grade the 
assignment in a traditional way using some grading 
scale, for instance a point scale from 0 to 6. Then the 
evaluation study could produce results like “We 
observed that on an assignment testing level 2 
knowledge, learners using method A gained an average 
4.6 out of 6 points whereas learners using method B 
gained only 3.2 out of 6 points.” A t-test could be used 
to determine whether this difference is statistically 
significant. 
 
 

 
2. Drop-out rate 

For some learners, the difficulties they encounter in 
their studies cause them to decide to drop a course. 
There can be many reasons for such a decision. The 
reasons that are most relevant in the context of this 
report are the learners' motivation for studying the 
topic and their attitude toward different learning 
methods and tools used in the course. Measuring drop-
out is not always straightforward, since some learners 
may register for the course before they make their final 
decision to take it. Thus, the number of learners who 
remain in the course long enough to submit at least the 
first assignment or exam for evaluation may be a better 
indicator of initial participants. Another issue to 
consider in measuring drop-out rate is related to the 
institutional rules for taking the final exam. Depending 
on the rules of a given university, learners may have 
one or several options for taking the final exam. Viable 
checkpoints for measuring drop-out rate could be 
immediately after the first exam or after all exams 
have been completed. The definition of drop-out to be 
used in a specific instance must be determined as the 
experiment is designed. 

3. Learning time 
Different learners need varying amounts of time to 
gain the same level of knowledge. Different learning 
methods can also affect the learning time. This can be 
important if the instructor wishes to cover more topics 
in the course. Thus, instead of setting up assignments 
with a set time limit and assessing the learner's 

Level in Bloom’s 
Taxonomy 

What Can The Learner Do At This Level Sample Tasks And Assignments 

4 - Analysis • Understands the relation of the algorithm 
with other algorithms solving the same or 
related problems. 

• Understands the invariants in the algorithm 
code. 

• Be able to reason, argue about and/or prove 
the correctness of the algorithm. 

• Be able to analyze a complicated problem, 
identify essential objects in it and split the 
problem into manageable smaller problems. 

• Categorize various tree structures. 
• Compare the performance of Quicksort 

and Heapsort. 
• Argue why Dijkstra's algorithm works. 
• Explain why Prim's algorithm works for 

graphs containing edges with a negative 
weight but Dijkstra's algorithm does not. 

• Analyze what kind of data structures and 
algorithms are needed in building a 
search engine. 

5 - Synthesis • Design solutions to complex problems 
where several different data structures, 
algorithms and techniques are needed. 

• Analyze the efficiency of complex 
combined structures. 

• Set up criteria for comparing various 
solutions. 

• Design a search engine and analyze its 
efficiency of space and time. 

• Design the data structures and algorithms 
needed by a car navigation system 

• Create a test environment for assessing 
how various search structures perform in 
a hierarchical memory. 

6 - Evaluation • Argue how and why some algorithm should 
be modified or combined with other 
algorithms to solve efficiently a new, more 
complex problem. 

• Discuss the pros and cons of different 
algorithms that solve the same or similar 
problems. 

• Carry out an evaluation of a design or 
analysis.  

• Define appropriate criteria for assessing 
the applicability of search algorithms and 
argue why these criteria are important. 

• Compare balanced trees and hashing as 
methods of implementing a dictionary. 

• Discuss the design of a solution, and 
argue why it is better or worse than a 
different solution. 

• Discuss how the analyses presented in the 
source text could be refined.  
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improvement, the instructor could set up assignments 
with unlimited time and measure the time required for 
students to complete all assignments. If using 
visualization motivated learners to spend more time on 
task, this could be viewed as a positive result. 

4. Learner satisfaction 
Learners have different motivations for taking a 
course. Additionally, their motivation can change 
during the course. It is therefore reasonable to ask for 
feedback to inform the educator what the learners think 
about the course. These questions may cover attitudes 
toward the subject itself, as well as the learners' 
opinions of various learning methods and tools applied 
during the course. 

4.4 Covariant factors 
There are additional factors that can affect the results of an 
experimental study. These factors describe the nature of the 
population under study. Such information is not a direct 
focus of the experiment, but can be gathered separately as 
background information that can help in analyzing the 
measured data. 
1. Learning style 

Learners exhibit different learning styles. Several 
learning style models have been presented in the 
context of computing education, for example, the 
Felder-Silverman learning model [16, 17] and Kolb's 
learning model [36]. These models classify learners in 
different categories and dimensions. For example, the 
Felder-Silverman model defines four different 
dimensions of learning: visual/verbal, active/reflective, 
sensing/ intuitive, and sequential/global. Each learner 
falls somewhere on the continuum in each dimension, 
and their position can considerably affect their learning 
when different learning methods and tools are used. In 
an evaluation study, learning style can blur the results. 
For example, visual learners could perform better 
using visualization tools whereas verbal learners could 
perform better without them. If both learning types are 
equally represented in the population that is being 
observed, the overall result may show no improvement 
on average. 
Learning style can be determined using simple 
questionnaires (forexample, the Keirsey instrument 
[33]). However, learning style is not completely static, 
since properties that are less well developed in a given 
learner can be trained. 

2. Learner's familiarity with using visualization 
technology 
If an experiment is conducted on how students learn 
one particular topic using visualization technology, the 
researcher should consider whether some students 
participating in the experiment have also used the 
visualization tool to explore other topics. The 
researcher would expect that previous familiarity with 
the tool would improve students' ability to learn with 
it. Hence the effectiveness of visualization in learning 
may well be highly dependent on how deeply the 
instructor has integrated the use of the visualization 
tool into a variety of activities in the course. Indeed, 
Ross [52] goes so far as to state that “even very good, 
active learning visualization software will be seldom 
used if it is a standalone system that is not integrated 

as part of the teaching and learning resources of a 
class.'' 

3. Learning orientation 
Learners have different goals in their learning. 
Niemivirta [46] mentions several different learning 
orientations, including those with respect to 
achievement, performance-approach, performance-
avoidance, and avoidance. Thus, some learners may 
have a goal of learning the topic, while the goal of 
others may be to just pass the course, or to achieve 
good grades or better grades than their fellow learners. 
Some learners, on the other hand, avoid situations that 
they feel are hard. All of these attitudes can 
considerably affect performance when different 
learning methods are being used.  
Learning orientation can be tested with simple 
questionnaires, but again the researcher must recognize 
that this factor need not be static. Learning orientation 
could change over the duration of a course if the 
learner's motivation for the topic changes considerably. 
In general, however, change of learning orientation 
occurs much more slowly than this. 
 

4. Other background information 
 There are several other factors that can be of interest 
in testing learners' improvement. These include 
learner's background, gender, age, curriculum, and so 
forth. 

5. An Experimental Framework 
This section describes a large general study on forms of 

engagement and their learning outcomes to be carried out 
over the next year. The study will involve the members of 
the Working Group and any other educators who would like 
to join in. In this section, we describe our hypotheses, 
propose a general framework for performing experiments, 
and provide several examples of experiments that would fit 
within our vision. 

5.1 General Hypotheses 
We make the following hypotheses based on the six 

forms of engagement described in Section 3. We have 
represented the forms of engagements and their possible 
overlaps in the Venn diagram of Figure 2. This diagram 
showed that viewing is included in the latter four categories 
and these latter four can overlap in many ways. The 
hypotheses can be related to the fundamental principles set 
forth in constructivist learning theory, which was 
mentioned in Section 2.3. 

The hypotheses are the following: 
I. Viewing vs. No Viewing: 

Viewing results in equivalent learning outcomes to no 
visualization (and thus no viewing). 

Several studies [1, 11, 40]have shown that mere passive 
viewing provides no significant improvement over no 
visualization, but these studies were based on small sample 
populations. Our study may be able to verify this with 
larger numbers. 

II. Responding vs. Viewing: 
Responding results in significantly better learning 

outcomes than viewing [7, 11, 15, 24, 30, 44] 
III. Changing vs. Responding: 
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Changing results in significantly better learning 
outcomes than responding [1, 18, 35, 45] 

IV. Constructing vs. Changing: 
Constructing results in significantly better learning 

outcomes than changing 1, 24, 51, 55] 
V. Presenting vs. Constructing: 

Presenting results in significantly better learning 
outcomes than constructing 

VI. Multiple Engagements: 
A mix of several forms of engagement is natural and we 

expect this to occur in experiments, especially in the latter 
types of engagement. This sixth hypothesis merely states 
“More is better.” That is, the higher the level or the more 
forms of engagement that occur when using visualization, 
the better the learning becomes [1]. Figure 2 provided an 
indication of the variety of combinations that could occur in 
this regard. 

5.2 A General Framework 
This general framework is provided as a means of 

encouraging a level of consistency across all experiments 
conducted as a part of this study. These guidelines assume 
that the experimenter has selected a hypothesis for testing, 
an algorithm as the focal point, and a visualization tool that 
will support the form of engagement. The framework 
includes selection of participants, preparation of materials 
to use in performance of tasks, a procedure that defines the 
organization of the experiment, and a description of the 
evaluation instruments for data collection [32]. 

Participants 
Typically, participants will be drawn from a particular 

course. An instructor might consider the use of volunteers 
outside the classroom setting. On the one hand, a volunteer 
group is less desirable as it introduces a factor of self-
selection. On the other hand, learners in a course may view 
participation in the study as affecting their grade in the 
course. The ethics of studies that involve human subjects is 
a matter of concern in most campus communities; 
participating researchers must consult the guidelines of the 
local Human Subjects Research Board and, if necessary, 
seek approval for the study.  

Background information about the participants should 
be collected for data analysis purposes. (See the evaluation 
instruments section below.) The identity of individual 
learners may be made anonymous by use of ID-numbers. 

Materials and Tasks 
The researcher must generate a list of learning 

objectives, keyed to Bloom's taxonomy (see Section 4.1), 
and prepare the instructional materials that will be used in 
the tasks. This comprises the pre-test and post-test, 
laboratory materials that include the visualization, and 
possible plans for classroom lectures, presentations, and 
discussions. The instructional materials and tasks carried 
out by the instructor and the learners will vary depending on 
the hypothesis being tested. This is necessarily the case due 
to the demands of varying levels of engagement. 

As an example, suppose the topic area of the 
visualization experiment is Quicksort. In section 4.2, we 
suggested tasks at level 2 (comprehension) and level 3 
(application) in Bloom's taxonomy. If the level of 

engagement is Responding, the materials can include the 
Quicksort visualization and a worksheet handout. The 
learner's task is to view the Quicksort visualization and then 
answer questions on the worksheet. Questions on the 
worksheet at level 2 (comprehension) of Bloom's taxonomy 
would be of the form “Given data set X, which item will be 
chosen as the pivot?” or “How many items are in a 
particular partition?” 

As a second example, consider the Quicksort algorithm 
with combined levels of engagement, Constructing and 
\Changing. The materials include a tool that supports 
learner construction of visualizations. The tasks could be: 
“(1) Construct a visualization of the Quicksort algorithm so 
the resulting list of items is in ascending order; and (2) 
Change the data set for the Quicksort visualization to force 
worst case behavior.”  

Procedure 
The purpose of the procedure is to organize the 

experiment. The overall experimental procedure is rather 
straightforward: pre-test, use materials to perform tasks, 
post-test. This three-step sequence does not cover all 
aspects of using the visualization materials and collecting 
data. We leave the details of the procedure to the instructor 
to plan a best fit for their schedule and their learners.  

To construct such an experiment, the best method for 
obtaining reliable results is to split the learners into two or 
more randomized groups, in which the distribution of the 
population under study is similar, according to the chosen 
covariants presented in Section 4.4. However, since such 
groupings are often not feasible, some other approach may 
be used, for example: 
• If an institution has two sections of a course, each 

section can use one type of engagement and then the 
two can be compared.  

• At some institutions where learners should have the 
same type of learning experience, one method can be 
used during the first half of the course in one section 
and not in the other section. Then the post-test is 
administered in both sections. After the post-test, when 
the experimental data has been collected, the section 
without the engagement can be given the same 
treatment to ensure equal opportunity for learning. 

• If the same course is taught in two different semesters, 
then one engagement method could be used one 
semester and another engagement method could be 
used another semester. 

Evaluation Instruments 
Several instruments are needed in order to carry out the 

experiment, including pre- and post-tests, a background 
questionnaire, task-specific logs, and learner feedback 
forms.  

Pre-Test and Post-test: Care must be taken to ensure 
that the pre-test and post-test are isomorphic. This is most 
easily ensured by using the same questions in a different 
order and/or with different, but comparable, data sets. Items 
in the pre-test and post-test should be keyed to Bloom's 
taxonomy and the learner objectives already defined during 
the ``Materials and Tasks'' stage of planning. However, 
learners who are aware of such a pre- and post-test may 
prepare for the post-test by practicing the questions that 
were part of the pre-test, hence tainting the experiment. 
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Background: Expected items include: gender, year in 
school, major, standardized test scores. Other items are at 
the discretion of the instructor. 

Task-specific: The instructor will manage the collection 
of data intended to measure the following:  
• Time on task -- categories could include the time 

learners spend on task in the classroom, in a closed lab, 
in an open lab, and on their own. 

• Learner progress -- scores and an item analysis of the 
pre-test and post-test. For example, in a Constructing 
vs. Changing experiment, three items on a pre-test and 
post-test might be keyed to a learner objective at level 
3 (application) of Bloom's taxonomy. In order to assess 
the learners' ability to apply the material they have 
learned to new situations, there can be an item analysis 
of the pre- and post-tests. This will give an indication 
of the contribution of each level of engagement to 
whatever gain (or no gain) occurred. 

• Drop-out rate -- this may be more significant in the 
lower-level courses. 

 
Learner feedback: A form will be used to collect 

information on the covariant factors defined in Section 4.4. 
Sample questions include the following. 
1. How effective was the visualization in illustrating the 

concept? 
2. What is the contribution of visualization to your 

understanding? 
3.  In what way has your attitude changed on this topic? 

Example Experiments 
In this section we suggest examples of possible 

experiments and how they could be interpreted with 
different forms of engagement.  

We describe six topics from different areas of computer 
science and how they could be defined using different 
forms of engagement. Each example describes the forms of 
engagement that would be the independent or treatment 
variables of the experiments. The dependent or criterion 
variable in each example will be the pre-test and post-test 
that will be given to each group. 

 
1. Area: Programming Languages  

Topic: Data Types in Functional Programming  
Hypothesis I: Viewing vs. No Viewing 
 

 In this example, a tool is needed that allows one to 
run a program with functional data structures both in a 
textual and in a graphical display. For instance, breadth 
traversal involves lists and trees.  

No viewing breadth traversal could mean looking at 
the states of the algorithm on given data sets, where the 
states are given in textual format. 

Viewing breadth traversal could mean looking at an 
animation of the algorithm on the same data sets, where 
the states of the animation are given in graphical 
format. 
 

2. Area: CS-1  
Topic: Quicksort 
Hypothesis II: Responding vs. Viewing 

In this example, a tool is needed that allows one to 
view the animation of Quicksort. 

Viewing could mean looking at an animation of the 
algorithm on given data sets. The animation may or 
may not have controls associated with it such as 
pausing and stepping through the phases. The 
animation could be viewed with given data sets that 
illustrate the worst case and average case. 

Responding could mean viewing Quicksort with 
either prediction built into the software or a worksheet 
containing questions that learners must answer while 
stepping through the animation. Learners must answer 
questions such as “Which element will be chosen as the 
next pivot? What will the array look like after the call 
to find the next pivot? Which section of the array will 
be sent in the next call of recursion? Which section of 
the array at this point in time is guaranteed to be in 
sorted order?” 

 Concepts to focus on are the understanding of the 
overall algorithm, understanding the recursion part of 
the algorithm, and understanding the choice of pivot 
and the algorithm for the rearrangement of the data 
around the pivot. 

3. Area: CS-2 
Topic: Tree Traversal 
Hypothesis II: Changing vs. Responding 

In this example, a tool is needed that allows one to 
load a tree and see the animations of the tree traversals 
pre-order, in-order and post-order. 

Responding could mean watching animations of 
tree traversals pre-order, in-order, and post-order on 
given trees with either prediction built into the software 
or a worksheet that learners must answer during the 
stepping-through of the animation. Learners must 
answer questions such as “Which node is printed out 
next? When will this node be visited? How many times 
is this node visited before it is printed?” 

Changing could mean changing the underlying 
data, which in this case is the tree. Learners can change 
the tree and then see what the different results are for 
different trees. 

4. Area: Automata Theory 
Topic: Converting an NFA into a DFA  
Hypothesis IV: Constructing vs. Changing 

In this example, a tool is needed that allows one to 
load or construct a nondeterministic finite automaton 
(NFA) and animate the process of converting the NFA 
into a deterministic finite automaton (DFA). 

Changing could mean changing the underlying 
NFA and then following steps to see how the different 
NFA's are converted into DFA's. 

Constructing could mean starting with an NFA and 
then constructing the equivalent DFA using software 
that will give helpful error messages if mistakes are 
made. 

5. Area: Algorithmics and Data Structures 
Topic: Shortest Paths 
Hypothesis V: Presenting vs. Constructing 

In this example, a compiler is needed, along with a 
tool for producing an animation, such as a scripting 
language. 

Constructing could mean writing program code and 
the animation for the shortest paths algorithm. Both of 
these are time-consuming. The learner is likely given 
pseudo-code or general code for the algorithm and must 
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first adapt it, and then add the components to produce 
the animation using a scripting language. 

Presenting could mean the learner would present 
the shortest path algorithm in detail in front of the class, 
possibly using a presentation software. 

Note: the Presenting example above for the shortest 
paths algorithm is likely to include additional forms of 
engagement such as Constructing, Changing, or 
Viewing in order to learn the algorithm before 
presenting it. 

6. Area: Introduction to Programming 
Topic: Recursion 
Hypothesis VI: Changing vs Viewing 

 In this example, a program visualization tool is 
needed. A program visualization tool allows the learner 
to construct a program and then automatically generates 
an animation. For instance, Alice 3D animation tool 
(http://www.alice.org) provides a programming 
language environment where learners can immediately 
see an animation of how their program executes [14] 

Viewing could mean watching an animation where 
a skater (or some figure) is skating to a cone on the ice, 
avoiding collision. The condition of nearness to the 
cone is used to control a recursive call to the animation 
method (tail recursion). 

Constructing and Changing could mean the learner 
constructs the animation using recursive calls to glide a 
skater to the cone without colliding. Then, the learner is 
asked to change the animation to make the skater 
respond to a mouse click on different cones, skating to 
the selected cone. 

6.  Conclusion 
In this report, we have set the stage for a wide variety 

of future studies that will allow computer science educators 
to measure the relationship between a learner's form of 
engagement with a visualization and the types of 
understanding that are affected by that engagement. We 
have defined an engagement taxonomy to facilitate a 
consistent approach toward defining the form of 
engagement used in such studies. We have also described 
how Bloom's taxonomy can be used to differentiate among 
types of understanding in various areas of computer 
science. Based on these taxonomies, we have specified a 
framework for conducting experiments that use these two 
taxonomies to establish the independent and dependent 
variables respectively. 

In the coming year, we intend to design several specific 
experiments that are based on this methodology. These 
experiments will be broad enough to allow collaboration 
between researchers at many institutions. We invite 
educators who are interested in participating to contact 
either of the working group co-chairs at naps@uwosh.edu 
or roessling@acm.org. 
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